Механизм образования связей в соединениях атомов, имеющих оболочечно-узловое строение

Г.П. Шпеньков

g.shpenkov@gmail.com

На предыдущей конференции AMS12 было сделано сообщение об открытии оболочечно-узлового (молекулярно-подобного) строения атомов [1]. Реальность открытия подтверждена во всех рассмотренных автором случаях и проверена экспериментально, в частности, на графене, о чём сообщалось на упомянутой выше конференции.

В продолжение темы, связанной с открытием оболочечно-узлового строения атомов, в данном сообщении представлены расчётные параметры кристаллической решётки графита, атомы углерода в котором представляют собой элементарные 6-и узловые нуклонные молекулы. А также приведены схемы, демонстрирующие механизм образования одноатомных слоёв графита, а также молекул C_{60} (бакминстерфулерена) и кристалла алмаза.

Согласно волнового строения атомов длина межузельных связей $r_{l,s}$ в молекулах определяется решениями радиальной составляющей волнового уравнения — корнями функций Бесселя $z_{l,s}$ — и фундаментальным волновым радиусом $\lambda_e = 1.603886538\cdot 10^{-8}~cm$, поскольку $z_{l,s} = r_{l,s}/\lambda_e$, где $\lambda_e = c/\omega_e$ и $\omega_e = 1.869162559\cdot 10^{18}~s^{-1}$ есть фундаментальная частота атомного и субатомного уровней. Частота ω_e определяет все процессы на атомном и субатомном уровнях, в том числе прочность и протяженность связей («сильных» и электромагнитных»), т. е. определяет строение веществ: атомов, молекул, жидкостей и твердых тел.

Расстояние между двумя ближайшими потенциальными узлами в решётке графита определяется корнем $y_{0,1}$ =0.89357697 функций Бесселя и равно $r=y_{0,1}$: $\lambda_e=1.433196073\cdot10^{-8}$ cm. Rешётка графита, состоящая из молекулярноподобных атомов углерода (см. Рис. 1), характеризуется следующими параметрами элементарной ячейки: $n=\left(1\frac{1}{6}\times2+1\frac{2}{3}\right)=4$ nodes per unit cell, $V=n\cdot12.0107\frac{m_u}{\rho}=35.29953318\cdot10^{-24}$ cm^3 , $m_u=1.660539040\cdot10^{-24}$ g,

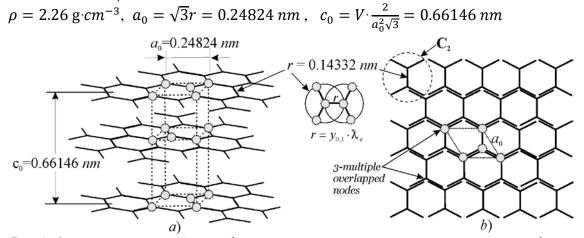
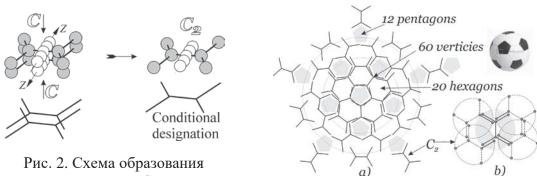



Рис.1. Элементарная ячейка графита и структура его одноатомного слоя, графена.

Приведенные выше значения постоянных решётки a_0 и c_0 близки к постоянным решётки графита (при 300 K), известным из литературы. Расчётные данные соответствуют графиту, состоящего из C_2 — димеров углерода, имеющего оболочечно-узловое строение. На Рис. 2 показана схема образования C_2 путём перекрытия узлов сближаемых С-"атомов". Таким образом, "строительными блоками" графита, а следовательно, графена являются димеры углерода C_2 .

молекулы С2

Рис. 3. Схема образования молекулы $(C_2)_{30}$

Как показано на Рис. 3 молекула бакминстерфуллерена образуется из 30-и димеров углерода C_2 , поэтому формула молекулы (C_2)₃₀, а не C_{60} .

Схема образования кристаллов алмаза из димеров С2 показана на Рис. 4 и 5.

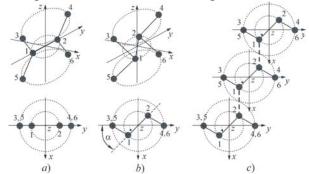


Рис. 4. Образование межузельных "межатомных" связей в кристалле алмаза.

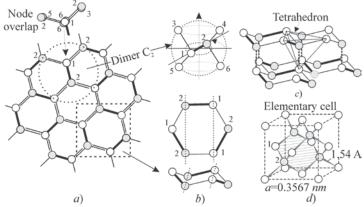


Рис. 5. Строение гранецентрированной кубической решётки алмаза.

Поворот внутренней волновой оболочки с узлами 1 и 2 допускается решениями азимутальной составляющей волнового уравнения. Реализуется при огромных внешних давлениях на графит. В результате между повёрнутыми узлами 1 и 2 соседних атомов возникают связи, показанные пунктирными линиями на Рис. 4.

Представленные выше и другие полученные данные свидетельствуют о том, образовании молекул и роль при кристаллов пространственное расположение узлов и межузельных сильных связей в "атомах". Электроны играют вторичную роль. Они определяют лишь прочность («силу») Химические "ковалентные" химических связей. связи реализуются непосредственно вдоль сильных межузельных связей каждого из объединяемых "атомов" (элементарных нуклонных молекул) или их димеров.

Литература

[1] Г.П. Шпеньков, Открытие оболочечно-узлового строения атомов и, как следствие, анизотропии гексагональной решётки графена, Сб. "Аморфные и микрокристаллические полупроводники", ФТИ им. Иоффе, СПб, с. 35-36 (2021).