
A Comparison of Two Models in Physics: (new and currently accepted)

Dynamic (DM) and Standard (SM)

	The fundamental frequency of the subatomic and atomic levels:	c,
		Unknown
į.	$\omega_e = e / m_e = 1.869162559 \cdot 10^{18} s^{-1}$	
6	Static fields do not exist in Nature.	
	"Electrostatic" fields are, actually, exofrequency fields of the fundamental	Unknown
	frequency ω_e (see # 5)	
7	The objective <i>transversal</i> ("magnetic") <i>charge of an electron</i> on the Bohr orbit:	Unknown
		Chkhown
	$e_{H} = \frac{O_{0}}{C}e$	
8	The fundamental wave radius:	Unknown
i i	$\lambda_{e} = c/\omega_{e} = 1.603886492 \cdot 10^{-8} cm$	
	$\kappa_e = c / \omega_e = 1.003880492 \cdot 10$ Cm	
9	The ratio of electron's orbital magnetic moment,	
-	$\mu_{e,orb} = e \upsilon_0 r_0 / c ,$	Incorrect value
į	to its orbital moment of momentum,	$\frac{\mu_{e,orb}}{\hbar} = \frac{e}{2m_e c}$
	$\hbar = m_e \upsilon_0 r_0:$	$\hbar 2m_e c$
	$\frac{\mu_{e,orb}}{\hbar} = \frac{e}{m_e c} = \frac{1}{\lambda_e} = k_e$	
10	The magnetic moment of an electron:	Incorrect value
10	$\mu_e = \frac{\upsilon_0}{c} e(r_0 + \delta r_0) = -1855.877359 \cdot 10^{-26} J \cdot T^{-1};$	$\mu_e = (1 + \alpha_e) \frac{e\hbar}{2m c} =$
	c c c c c c c c c c	e
	$v_0 = 2.187691263 \cdot 10^8 \ cm \cdot s^{-1}$ is the Bohr speed	$= -928.476410(80) \cdot 10^{-26} J \cdot T^{-1}$
	$O_0 = 2.107091209 10 \text{ cm} \text{ s}^{-1}$ is the Dom speed	

11The proper magnetic moment of an electron
(electron "spin" magnetic moment):
$$\mu_s = \frac{r_e}{z_{p,q}} \sqrt{\frac{2Rh_e}{m_0 c}} = -5.50792 \cdot 10^{-29} J \cdot T^{-1}$$
Incorrect value
$$\mu_s = \mu_B = \frac{e\hbar}{2m_e c} =$$

$$= -927.400947(80) \cdot 10^{-26} J \cdot T^{-1}$$
12The radius of an electron shell (electron's radius):
$$r_e = \sqrt{\frac{m_e}{4\pi\epsilon_0}} = 4.17052597 \cdot 10^{-10} cm$$

$$\epsilon_0 = 1 g \cdot cm^{-3}, m_e = 9.10938253 \cdot 10^{-28} g$$
Considered as
a point like particle.
Classical electron radius is
$$r_e = \left(\frac{\upsilon_0}{c}\right)^2 r_0 =$$

2.817940325 $\cdot 10^{-13} cm$ 13The radius of a proton shell (proton's radius):
$$r_p = 0.528421703 \cdot 10^{-8} cm$$

(calculated from the formula of mass, see # 1)Unknown
Proton rms charge radius is
 $r_p = 0.8750(68) \cdot 10^{-13} cm$ 14The fundamental frequency of the gravity field:
$$\omega_g = \sqrt{4\pi\epsilon_0 G} = 9.158082264 \cdot 10^{-4} s^{-1};$$

$$G = 6.6742 \cdot 10^{-8} g^{-1} \cdot cm^3 \cdot s^{-2}, \quad \varepsilon_0 = 1 g \cdot cm^{-3}$$

ст

15	The fundamental wave radius of the gravity field: $\lambda_g = c / \omega_g = 327.4 Mkm$	Unknown
16	The gravitational spectrum of nucleon wave shells: $r = \lambda_g Z_{m,n};$ $Z_{m,n}$ are roots of Bessel functions	Unknown
17	The background spectrum of the hydrogen atom: $\frac{1}{\lambda} = R \left(\frac{1}{n^2} - \frac{1}{(n+\delta n)^2} \right); \qquad \delta n = \delta r / r_0$	Unknown
18	The nature of the Lamb shift : the shift is precisely equal to the frequency gaps between the nearest spectral terms of the background spectrum (see # 17)	An erroneous concept based on an influence of the invented (non-existed) virtual particles
19	The precise derivation of binding energy in atoms without use of the relation $\Delta E = \Delta m \cdot c^2$	Unable
20	The physical meaning of the speed of light <i>c</i> in the relation $E_0 = m_0 c^2$; m_0 is the associated mass of a particle (see # 1). Speed of light <i>c</i> is the basis wave speed of exchange of matter-space-time at the subatomic level.	Unknown m ₀ is the " <i>rest</i> " mass.

21	Internal spatial structure of atoms , <i>i. e.</i> , the disposition of nucleons in atoms (The latter defines the structural variety at the molecular level in Nature: " genetic code ")	The fixed (strictly geometrical) disposition of nucleons is Unknown
22	The g-lepton structure of nucleons: Proton and Neutron are similar in g-lepton structure to isotopes ${}^{28}_{14}Si$ and ${}^{29}_{14}Si$, respectively, according to Shell-Nodal Atomic Model $(m_g = 68.22 m_e)$	Quark structure (does not similar to crystal)
23	Crystal structure of solids , including forbidden by mathematical laws of crystallography	Unable
24	The structure of all isotopes and their relative masses (including limiting masses: minimal and maximal for every isotope)	Unable
25	The nature of Mendeleyev's Periodic Law: the similarity of nodal structure of external atomic nucleon shells.	Different explanation: electron structure of atoms
26	The fine structure constant physical meaning: the scale correlation between basis and superstructure of wave (between oscillatory and wave processes in waves)	Unknown
27	The unified description of electromagnetic, gravitational, and strong (nuclear) interactions	Unable

29	The nature of the spherical harmonics of wave and Schrodinger equations The spherical harmonics define polar-azimuthal coordinates of nodes and antinodes of standing spherical waves	<i>Unknown</i> As a result, an introduction in quantum mechanics of the conceptually unfounded notion of hybridization of atomic orbitals
	<i>The nature of integer and fractional quantization in quantum Hall effect</i> The nature of quantization in the Hall conductance (the resistance	<i>Fitting theory in the spirit of the virtual particles of quantum electrodynamics</i> Modern explanation is based on an imaginary
	quantum) is naturally uncovered as an internal feature of atomic structures considered as wave formations, without accounting an influence of external magnetic fields. The deduced spectrum of fundamental resistances $R_e = \frac{h}{e^2} \frac{m}{n}$	quantum-mechanical fluid of a hypothetical new form and on a many body wave function. It predicts that the elementary excitations involve pseudo-particle charge carriers with charges that are fractions of the electronic charge.
	$e^{e} e^{2} n$ Precise derivation of the neutron magnetic moment	
	$\mu_n(th) = \frac{e\upsilon_0}{c} \left[\left(\tilde{\lambda}_e + \frac{r_0}{y_{0,12}} \right) \sqrt{\frac{2Rh}{m_0 c}} + \frac{r_e}{j_{0,12}} \sqrt{\frac{2Rh_e}{m_0 c}} \right]$ $\mu_n(th) = -0.96623513 \cdot 10^{-26} J \cdot T^{-1}$	Unable
31	Precise derivation of the proton magnetic moment $\mu_{p}(th) = \frac{(e + \Delta e_{p})\upsilon_{0}}{c} \left(\lambda_{e} + r_{0} \frac{1}{\beta} \frac{(a'_{0,11} + y_{0,12})}{2(a'_{0,11}y_{0,12})}\right) \sqrt{\frac{2Rh}{m_{0}c}}$ $\mu_{p}(th) = 1.410606662 \cdot 10^{-26} J \cdot T^{-1}$	Unable
		·'

Objective (true) dimensionalities of physical quantities in integer powers of units of matter (g), space (cm), and time (s): Electric charge, $[q] = [m]/[t] = g \cdot s^{-1}$ Electric current, $[I] = [q]/[t] = g \cdot s^{-2}$ Circulation, $[\Gamma] = [I]/[c] = g \cdot cm^{-1} \cdot s^{-1}$ Electric field strength, $[E] = [F]/[q] = cm \cdot s^{-1}$ Magnetic field strength, $[B] = [F]/[q] = cm \cdot s^{-1}$ Electric field momentum density, $[D] = [\varepsilon_0][E] = g \cdot cm^{-2} \cdot s^{-1}$ Magnetic field momentum density, $[H] = [\varepsilon_0][B] = g \cdot cm^{-2} \cdot s^{-1}$ Potential, $[U] = [F][l]/[q] = cm^2 \cdot s^{-1}$ Resistance, $[R] = [U]/[I] = g^{-1} \cdot cm^2 \cdot s$ Conductance, $[G] = [R]^{-1} = g \cdot cm^{-2} \cdot s^{-1}$ Resistivity, $[\rho] = [R][l] = g^{-1} \cdot cm^3 \cdot s$ Conductivity, $[\sigma] = [\rho]^{-1} = g \cdot cm^{-3} \cdot s^{-1}$ Inductance, $[L] = [U][t]/[I] = g^{-1} \cdot cm^2 \cdot s^2$ etc. Other physical quantities of electromagnetism contained electric charge, current, and their derivatives with corrected dimensionalities.

33 **Fundamental Period of the Decimal Code of the Universe**

 $\Delta = 2\pi \lg e = 2.7287527...$

Incorrect dimensionalities (subjective, phenomenological)

Accepted in contemporary physics dimensionalities of physical quantities of electromagnetism, based on the erroneous dimensionalities of electric charge, current, and their derivatives, are erroneous.

Unknown

Literature

- [1] L. Kreidik and G. Shpenkov, *Dynamic Model of Elementary Particles and the Nature of Mass and 'Electric' Charge*, "Revista Ciencias Exatas e Naturais", Vol. 3, No 2, 157-170, (2001); <u>http://www.unicentro.br/editora/revistas/recen/v3n2/trc510final.pdf</u>
- [2] L. G. Kreidik and G. P. Shpenkov, Atomic Structure of Matter-Space, Geo. S., Bydgoszcz, 2001, 584 p.
- [3] G. P. Shpenkov and L. G. Kreidik, On Electron Spin of $\hbar/2$, Hadronic Journal, Vol. 25, No. 5, 573-586, (2002).
- [4] G. P. Shpenkov, Shell-Nodal Atomic Model, Hadronic Journal Supplement, 17, No. 4, 507-566 (2002).
- [5] L. G. Kreidik and G. P. Shpenkov, *Microwave Background Radiation of Hydrogen Atoms*, Revista Ciências Exatas e Naturais, **4**, No. 1, 9-18 (2002); <u>www.unicentro.br/pesquisa/editora/revistas/exatas/v4n1/Microwave.pdf</u>
- [6] L. G. Kreidik and G. P. Shpenkov, *Philosophy of Contents-Form and Coulomb's Law*, Proceedings of The Twentieth World Congress of Philosophy, Copley Place, Boston, Massachusetts, USA, 10-16 August, 1998; http://www.bu.edu/wcp/Papers/Scie/Scie/Spe.htm
- [7] G. P. Shpenkov, *Derivation of the Lamb Shift with Due Account of Wave Features for the Proton-Electron Interaction*; Revista Ciencias Exatas e Naturais, Vol. 6, No 2, 171-185, (2004); <u>http://shpenkov.janmax.com/derivation.pdf</u>
- [8] G. P. Shpenkov, An Elucidation of the Nature of the Periodic Law, Chapter 7 in "The Mathematics of the Periodic Table", edited by Rouvray D. H. and King R. B., Nova Science Publishers, NY, pp. 119-160, 2006.
- [9] G. P. Shpenkov, *The first Precise Derivation of the Magnetic Moment of an Electron Beyond Quantum Electrodynamics*, Physics Essays, **19**, No. 1, (2006).
- [10] G. P. Shpenkov, On the Fine-Structure Constant Physical Meaning, Hadronic Journal, Vol. 28, No. 3, 337-372, (2005).
- [11] G. P. Shpenkov and L. G. Kreidik, *Conjugate Parameters of Physical Processes and Physical Time*, Physics Essays, **15**, No. 3, 339-349, (2002).
- [12] L. G. Kreidik and G. P. Shpenkov, Important Results of Analyzing Foundations of Quantum Mechanics, Galilean Electrodynamics & QED-EAST, Vol. 13, SI No. 2, 23-30, (2002); http://shpenkov.janmax.com/QM-Analysis.pdf
- [13] G. P. Shpenkov and L. G. Kreidik, *Schrödinger's Errors of Principle*, Galilean Electrodynamics, Vol. 16, No. 3, 51-56, (2005); http://shpenkov.janmax.com/Blunders.pdf
- [14] G. P. Shpenkov and L. G. Kreidik, What the Electric Charge is; http://shpenkov.janmax.com/Elec-Charge.pdf
- [15] G. P. Shpenkov, Conceptual Unfoundedness of Hybridization and the Nature of the Spherical Harmonics, HADRONIC JOURNAL, Vol. 29. No. 4, p. 455, (2006).
- [16] G. P. Shpenkov, The Dependence of Hall Conductance Quanta on the Fundamental Frequency of the Atomic Level, (2009); http://shpenkov.janmax.com/Hall.pdf
- [17] G. P. Shpenkov, *Derivation of Neutron's Magnetic Moment on the Basis of Dynamic Model of Elementary Particles*, (2008); http://shpenkov.janmax.com/neutronmagmom.pdf
- [18] G. P. Shpenkov, *Derivation of the Proton's Magnetic Moment beyond QED and QCD Theories*, (2008); <u>http://shpenkov.janmax.com/protonmagmom.pdf</u>