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Abstract. A new insight into the notion of temperature, originated from the shell-nodal 
atomic model and the dynamic model of elementary particles, is considered in this paper. 
We show that a quantum of average energy of a nucleon at the level of the so-called 
meson frequency ω0 is close, in value, to the Boltzmann constant kB. The number of such 
quanta defines the relative potential-kinetic nucleon energy of a system, equal in value to 
the absolute temperature. It means that the temperature, as the potential-kinetic energy, 
according to the revealed peculiarity, is the alternating wave magnitude and is negative 
for the relative potential energy and positive for the relative kinetic energy. The 
Boltzmann and Avogadro constants are expressed in new basis through the basic physical 
constants. Accordingly, we can regard the constants of the resulting values as 
fundamental. 
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1. Introduction 
 

Shell-Nodal Atomic Model (SNM) [1-3] and Dynamic Model of Elementary Particles 
(DM) [4, 5] allow explaining the structure of matter at atomic and subatomic levels and 
understanding some unknown sides and misunderstood properties of matter. 

One of such fundamental properties is temperature, which reflects an energetic state 
of a system, being its measure. According to strict thermodynamic definitions, the 
temperature T expresses the relationship between the change of internal energy U, or 
enthalpy H, and the change of entropy S of a system: 
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In statistical mechanics that makes theoretical predictions about the behavior of 
macroscopic systems on the basis of statistical laws governing its component particles, 
the relation of energy and absolute temperature T is usually given by the inverse thermal 
energy 

TkB

1
=β .     (1.2) 

 
The constant kB, called the Boltzmann constant, equal to the ratio of the molar gas 
constant Rg and the Avogadro constant NA, 
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g
B ,    (1.3) 

 
plays a crucial role in this equality. It defines, in particular, the relation between absolute 
temperature and the kinetic energy of molecules of an ideal gas. 

The product kBT is used in physics as a scaling factor for energy values in molecular 
scale (sometimes it is used as a pseudo-unit of energy), as many processes and 
phenomena depends not on the energy alone, but on the ratio of energy and kBT. 

Given a thermodynamic system at an absolute temperature T, the thermal energy 
carried by each microscopic "degree of freedom" in the system is of the order of 2/TkB . 

Determination of NA, and hence kB, was one of the most difficult problems of 
chemistry and physics in the second half of the 19th century. The constant NA was (and 
still is) so fundamental that for its verifying and precise determination every new idea and 
theory appeared in physics are at once used. More accurate definition of the value of NA 
involves the change of molecular magnitudes and, in particular, the change in value of an 
elementary charge. The latter is related with NA through the so-called “Helmholtz 
relation” FeN A = , where F is the Faraday constant, a fundamental constant equal to 

1)39(3415.96485 −⋅ molC . 
Many eminent scientists devoted definite periods of their life to study of this problem: 

beginning from I. Loschmidt (1866), Van der Vaals (1873), S. J.W. Rayleigh (1871), etc. 
in the 19th century, and continuing in the 20th century, beginning from Planck (1901), A. 
Einstein and J. Perrin (1905-1908), Dewer (1908), E. Rutherforn and Geiger (1908-
1910), I. Curie, Boltwood, Debierne (1911), and many others. 

In history of physics, the Boltzmann constant has been undergone to the constant 
changes. We show here only two values of NA, in particular, obtained by Planck on the 
basis of his famous black body radiation formula [6], and the modern accepted value [7]: 
 

 
1231016.6 −⋅≈ molN A   (Planck, 1901)   (1.4) 

 
12310)30(02214179.6 −⋅= molN A  (2006 CODATA)  (1.5) 

 
There are no reliable direct experimental methods for the precise determination of the 

Avogadro constant. The only direct method for the determination of NA based on study of 
the Brownian motion has a low accuracy; therefore, it is not used at present.  
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One of the modern indirect methods is based on the calculation of NA from the 
density ρ of a pure (and free of defects) crystal, its relative atomic mass M, and the cell 
length d, determined from x-ray methods. Thus, the recommended value of NA (1.5) 
depends on a series of measured parameters related to the structure of matter. A most 
probable and self-consistent set of the constants NA, obtained by different methods, that 
best fits all reliable data is found by statistical methods. 

Calculations of NA (1.4) based on Planck’s radiation formula 
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where νr  is the energetic spectral luminosity of atomic space, were carried out at the time 
when a newborn theory, set forth first by Planck, has called doubts and not yet been 
accepted. Accordingly, nobody turned serious attention to the value NA (1.4) obtained by 
Planck at that time.  

From our point of view, the determination based on (1.6) deserves special attention. 
The matter is that the above formula does not contain quantities related to the structure of 
matter, as against to the case of the indirect determination with use of modern diffraction 
methods.  

In a case of the determination of NA on the basis of the SNM and DM, which we 
consider in this paper, we deal with the direct (similar to Planck’s) calculation of NA from 
the theoretical formula. It proved to be that the calculated quantity practically coincides 
with that one (1.4) obtained by Planck. In this connection and because the obtained 
results shed new light on the nature of kB and the temperature, it makes sense to present 
them for public discussion. The more so as a series of fundamental unsolved questions of 
physics already found their answers in the framework of the SNM and DM. We relate to 
them, in particular, the nature of mass and charge of elementary particles, the role of c2 in 
the famous formula on energy of particles, E=mc2 [4, 5]. The SNM and DM have 
revealed an internal spatial structure of individual atoms [1-3] and explained from a new 
point of view the nature of the Lamb shift [8] (without use of the notion of virtual 
particles) and the anomalous magnetic moment of an electron [9], and other phenomena 
[1]. 
 
 
2. Spectra of frequencies and associated masses originated from the DM 

 
According to the DM [4, 5], elementary particles recall pulsing spherical 

microobjects (pulsing thickenings of space), whose mass has associated character. Wave 
interaction of the particles, more correctly exchange of matter-space-time, is realized on 
the fundamental frequency of exchange inherent in the atomic and subatomic levels: 

 
11810869162534.1 −⋅=ω se .    (2.1) 

 
In dependence on the character of exchange, we distinguish associated masses in the 

longitudinal exchange (at motion-rest in the cylindrical field of matter-space-time), the 
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associated masses in the transversal exchange (transversal oscillations of the wave beam), 
and the associated masses in the tangential exchange (at motion-rest in the cylindrical 
space-field). 

We show here only derivation of the spectrum of masses (taken from the author’s 
book [1]) playing the role in the longitudinal exchange, because the latter leads to masses 
of particles constituent of atoms as, for example, π-mesons, µ-mesons, γ-quanta, etc. This 
will help understanding the concept related to the structure of nucleons, set forth first in 
[1] and used here.  

Motion-rest in the cylindrical field of matter-space-time can be presented, at a part of 
the axial line of length dz (Fig. 2.1), (in the simplest case) by the equation of exchange: 
 

    dz
z
F

t
dzz ∂

∂
−=

∂
Ψ∂

ρ 2

2

,     (2.2) 

 
where ρz is the linear density of mass, Ψ is the axial displacement, and F is the power of 
exchange. 

 

 
 

 
Fig. 2.1. A graph of power of the elementary longitudinal exchange. 

 

Let w be the density of energy of basis and p the density of energy of superstructure. 

In a linear approximation, the relative change of energy is 
zwS
zpS

∂
∂ , where zwS∂  is the 

energy of an elementary differential volume zS∂ , and zpS∂  is its change. 

Assuming that the relative change of energy of exchange is equal to the relative linear 

change of the elementary volume of space-field, 
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−= . As a result, the equation of exchange (2.2) takes the form 
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An element of a beam is tcz ∂=∂ ; hence, 
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and  
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zwSc ρ/= .     (2.5) 
 
If we consider the exchange with the density of energy at the level of Young modulus 

E, then 
     zESc ρ/= .     (2.6) 
and 
     zESkkc ρ==ω / ,    (2.7) 
 
where λπ= /2k  is the wave number, which takes a series of discrete values. 

Let us determine the characteristic spectrum of frequencies. For the hard-facing 
alloys, the Young modulus lies approximately within GPa680600 − . We select, in the 
capacity of a calculated magnitude, the characteristic value 654.9, which satisfies the 
metrological spectrum on the basis of the fundamental measure [10]: 

 
      Pa11106.549=E ⋅ .     (2.8) 

 
Let the remaining parameters be equal to 
 

    02 rl π= , lmel /=ρ ,  2
0rS π= ,    (2.9) 

 
where cmr 8

0 1095291772085.0 −⋅=  is the Bohr radius, gme
2810)45(10938215.9 −⋅=  is 

the electron mass. 
Under these conditions, the formula for the characteristic spectrum of frequencies 

(2.7) takes the form 

      kr004 ⋅ω=ω ,      (2.10) 
where    

    
88.272

1085091084.6
22

1150
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e

e
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Er ω
≈⋅=

π
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The frequency 0ω  is bound up with the fundamental frequency ωe (2.1) by the following 
characteristic ratio: 
 
  2

0 10lg28752708.2728103045.272/ ⋅π=≈=ωω ee .  (2.12) 
 

Frequency of the fundamental tone 0ω  is the characteristic frequency of the H-atomic 
level. If λ= nl , then nkr =0  and 

     116
0 104 −⋅∆≈⋅ω=ω snnn ,     (2.13) 

 

where elg2π=∆  is the fundamental quantum-period [10, 11]. 
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The spectrum of frequencies (2.13) defines the spectrum of associated masses of 
elementary particles: 

     
n
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eeM e
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= ,    (2.14) 

where 

    1910702691582.1 −− ⋅⋅= sge     (2.15) 
 
is the elementary exchange charge or an elementary quantum of the rate of mass 
exchange (the electron’s charge for brevity, its dimension and value originate from the 
DM [5]). 

If )2/(λ= nl , then nkr )2/1(0 =  and 

   nn ⋅ω=ω 02 , 
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At last, at )4/(λ= nl , it follows that nkr )4/1(0 =  and 

   nn ⋅ω=ω 0 , 
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eeM e
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= .   (2.17) 

 
Because at 1=n , a particle of the mass emM 2741 =  is the π-meson, we will call the 

frequency 0ω  the meson frequency. 

At ,4,3,2,1=n  we have     

    274 me  ⇒ π-meson 

    137 me  ⇒ γ-quantum 
    91.3 me ⇒ ρ-lepton 
    68.5 me ⇒ g-lepton   (2.18) 

 

Two g-leptons form a γ-quantum, three g-leptons compose a µ-meson: 
     

205.5 me ⇒ µ-meson.   (2.19) 
 
 
3. The Boltzmann constant and temperature waves 

 
In a spherical field, amplitude of oscillations of the spherical shell of a particle [1-3, 

8, 13] is 

kr
kreA

A lm
s

)(ˆˆ = ,    (3.1) 

where 
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and nmz ,  are roots of the Bessel functions, )(

2
1 krJ l+  and )(

2
1 krNl+  [12]. 

Let us determine a quantum of the average energy of a nucleon at the level of the 
frequency ω0, defined by the equation (2.11). We regard this frequency as one of the 
fundamental frequencies of the atomic level. Under the constant rate of mass exchange 
[4, 5] (exchange charge) of the value e, 

 

     πω=ω= mme ee 0 ,    (3.3) 
 
where me is the electron mass, a particle with the mass emm 273≈π  corresponds to the 
frequency 0ω . This is the π-meson level of masses. This frequency relates to the 
frequency range of the “electromagnetic” field and defines the characteristic energy of 
the nucleon level Es. 

The root of Bessel functions, corresponding to the first potential extremum of the 
first-order spherical function, 08157598.21,11,1 =′=′ az [12], defines the discrete (quantum) 
state with this energy, hence, the corresponding quantum of energy is 
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where m0 is the proton mass. Amplitude Am is determined from the formula [1, 8, 13] 
 

cm
hRrAm
0

0
2

= ,    (3.4a) 

 
where h is the Planck constant, R is the Rydberg constant, and c is the speed of light. 

Denoting the quantum of energy (3.4) as 
 

2
B

s
kE = ,     (3.5) 

 
and setting numerical values for all physical quantities entered in (3.4), we arrive at the 
quantity 
   ( ) ergaAmk mB

162
1,1

2
00 103512886.1/ −⋅=′ω= ,  (3.6) 

 
which is the characteristic quantum of energy of H-level. The latter is close in value to 
the ideal level k∆,  
    ergekkB

1610lg −
∆ ⋅π=≈ ,    (3.7) 
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because it is multiple, to an accuracy of the second figure after comma, to a half of the 
fundamental period-quantum ∆ of the Decimal Code of the Universe [10, 11], 
  

elg2π=∆ .     (3.8) 
 

The quantum kB (3.6) practically coincides, in value, with the Boltzmann constant 
(1.3) designated in the same manner (letters), but it has the dimension of energy, J (or 
erg), in comparison with the Boltzmann constant kB (1.3) of the dimension 1−⋅ KJ . 

Let us denote the number of quanta of energy (3.5) by the symbol Te, and then the 
nucleonic energy can be rewritten as 

     e
B

s TkE
2

= .     (3.9) 

 
The characteristic quantum of energy kB was introduced in science as the ratio (1.3) 

under the name the Boltzmann constant of the dimension 1−⋅ KJ ; its value accepted at 
present [7] is 

123103806504.1 −− ⋅⋅= KJkB .    (3.10) 
 
Thus, the Boltzmann constant kB (1.3) corresponds, in (3.9), to the characteristic 

quantum of energy kB (3.6), and the absolute temperature T corresponds to the number of 
these quanta Te. 

The nucleon energy has the potential-kinetic character. The potential energy is 
negative and the kinetic energy is positive. Hence, the relative nucleon energy Te is the 
negative one for the potential energy and the positive one for the kinetic energy. 
Therefore, in a general case, (3.4) can be presented as 
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where      
     ti

me eTT ω= 2ˆ .     (3.12) 
 
is the relative potential-kinetic energy. 

Motion-rest has the wave character; hence, we must speak about the wave of relative 
energy 
     )(2ˆ krti

me eTT −ω= ,    (3.13) 
which satisfies the wave equation 
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A positive component of the relative energy is known under the name the absolute 

temperature. Modern physics operates mainly with the averaged positive amplitude 
temperature macrofield of motion-rest with a high part of the state of chaos.  
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The notion of the negative absolute temperature is used in modern physics for the 
description of a thermodynamical system (for example, quantum generators [14, 15]), 
which satisfies certain conditions. According to the latter the thermodynamical system (1) 
must be in thermodynamical equilibrium with environment in order for the system to be 
described by the temperature at all. There (2) must be an upper limit to the possible 
energy of the states allowed for the system. The system (3) must be thermally isolated 
from all systems which do not satisfy both of the first two requirements [16, 17]. 

At the subatomic level of motion-rest, under the high degree of ordering, the 
temperature microfield is, in essence, a different expression of the “electromagnetic” 
field. 

According to the equation (3.11), the speed of pulsation of H-shell at the temperature 
of KT 2730 = , in a general case, is 
 

     1

,
0

,

0 3103 −⋅
′

≈
′

ω
=υ sm

z
T

z
A

nmnm

m .    (3.15) 

 
This field of motion-rest generates its own basis level of the wave motion. The maximal 
speed of pulsation of the nucleon shell, equal to 11490 −⋅=υ smm , corresponds to the 
root 08157598.21,11,1 =′=′ az . 

At depths of 100–200 m, in warm seas, the sound speed amounts to the minimum, 
which is about 11490 −⋅ sm . In other liquids, sound speed is also close to this value. It 
allows concluding that carriers of sound waves are nucleons and their field. 
Consequently, sound waves are extended to all levels of cosmic space. In solid, liquid, 
and gaseous spaces, the intensity of sound waves is comparatively simply registered by 
apparatuses. However, in Cosmos their intensity is a negligibly small one and it is natural 
that the modern technics cannot perceive it. 
 
 
4. The Avogadro constant 
 

Since 002 rmh eυπ=  and crR 00 4/ πυ= , the amplitude (3.4a) can be rewritten as 
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where c/0υ=α  is the fine-structure constant, r0 and 0υ  are the Bohr radius and speed, 
respectively. 

The meaning of the oscillation amplitude of the spherical shell of the hydrogen atom 
Am is clearly seen from the above presentation of the form (4.1). The amplitude Am is 
proportional to the Bohr radius squared and to the ratio of two characteristic energies of 
the binary wave system (the hydrogen atom is such a system): an oscillatory energy of 
the orbiting electron, 2

0υem , and the dynamic (carrying) energy of the pulsing proton, 
2

0cm  [4, 5]. 
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Hence, setting (4.1) in (3.4), with allowance for (3.5) and because 
 

∆ω=ω 2
0 10/e ,    (4.2) 
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where k is the wave number, we arrive at 
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Thus, the constant kB of the dimensionality of energy, 
 

sB Ek 2=      (4.5) 
 
is the combination (product) of the fundamental parameters (constants), which 
characterize the wave motion at the atomic level: the oscillatory energy of an electron in 
the hydrogen atom 2

0υem , the Bohr radius r0, the fundamental wave radius eD , and the 
fundamental period-quantum ∆.  

The constant kB (3.6) is “fundamental” in the sense just like “fundamental” is the fine-
structure constant α. The latter is a dimensionless quantity, but formed from the four 
basic physical constants ce ,, h  and 0ε , being at the same time the ratio of two basic 
speeds, 0υ  and c, [18]: 
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e 0
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.     (4.6) 

 
Setting (4.6) in (4.4), the characteristic quantum of energy Es can be presented also by 

three fundamental constants: me, r0, ω0 (we assume that ω0 must belong to them), and 
α (which is the combination of other fundamental constants): 
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Thus, an explicit form of the fundamental constant kB (see (3.6)) is 
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Hence, the Avogadro constant NA can be presented by the following formula: 
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Calculations of NA carried out with use of this expression, where 
11)15(314472.8 −− ⋅⋅= KmolJRg , give 

 
12310152995046.6 −⋅= molN A .   (4.10) 

 
We see that the resulting value of NA practically coincides with (1.4), obtained 
(theoretically as well) by Planck from his radiation formula (1.6).  
 
 
5. Conclusion 
 

A new insight into the notion of the temperature of matter, originated from the shell-
nodal atomic model and the dynamic model of elementary particles, has been considered 
in this paper. We have shown that a quantum of an average energy of a nucleon at the 
level of so-called meson frequency ω0 almost coincides in value with the Boltzmann 
constant kB accepted currently in physics. The number of such quanta defines the relative 
nucleon potential-kinetic energy of a system, which in essence is what we call the 
absolute temperature. The latter is the alternating wave magnitude, as the relative 
potential-kinetic energy, according to the found peculiarity. Therefore, the absolute 
temperature is negative for the relative potential energy and positive for the relative 
kinetic energy. 

The coincidence of the values of the fundamental constant NA, obtained theoretically 
by Planck (1.4) and in this paper (4.10), naturally calls some reflections. Namely a 
comparison of both data leads to the conclusion that Planck’s calculations of 1901 gave 
the correct value of NA because, as it turned out, it is the fundamental constant of the 
atomic level. In this case, the word “fundamental” means, that the physical constant 
obtained by Planck is the combination of fundamental physical constants (see (4.9), like 
in the case of the fine-structure constant α (4.6). The modern accepted value of NA (1.5) 
obtained from indirect measurements is different from the calculated value (compare 
(1.4) and (4.10) with (1.5)). It does not respond to the above definition, i.e., to the 
condition for to be fundamental, and, hence, it is not fundamental in the above meaning. 

By this reason, it seems to be obvious; the Avogadro and Boltzmann constants must 
be subjected to the detail analysis and further examination.  
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