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1. Introduction 

      We continue the description devoted to the direct derivation of the binding energy of 

atoms, begun in Part 1 and 2 of this article [1, 2], which became possible thanks to the key 

discoveries made in the framework of the Wave model (WM).  

      At the beginning of this last part of the article, I decided to remind some of the ideas that 

led us to the creation of the WM. They are directly related to the problem considered here.  

     As known, particular solutions (potential component) 
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 describe the location of the nodes of standing waves in 

a spherical wave field-space. Kinetic nodes, antinodes of standing wave, shifted relative to the 

potential ones, have the same form; they do not interest us here. 

     We presented the above solutions for the first time in physics in graphical form, moreover, 

in such a way as shown in Fig. 1 [3, 4].  

     Functions 
, ,( , ) ( )Cosl m p l mY m      give the spatial angular coordinates of the nodes of 

standing spherical waves (and toroidal vortices-rings, for m=0) on the corresponding radial 

wave shells described by the radial function 
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Fig. 1). 

     Analyzing the obtained solutions, we assigned serial numbers to the principal potential 

polar-azimuthal wave nodes, in the order of increasing their numbers in wave shells, starting 

from the nodal shell corresponding to the solution for  l=1 and m=±1.  

     Having accomplished this, we found a striking correlation of the number of such nodes in 

wave shells with atomic numbers Z of elements in the periodic table [3, 4], assuming herewith 

that each of the nodes of the stable atomic isotopes contains two coupled nucleons.  

     We also drew attention to the periodic quasi-similarity of the nodal structure (depending on 

the quantum numbers l and m [5]), which clearly correlates with the periodicity of the chemical 

and physical properties of the elements grouped in the periodic table. 
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     Ultimately, we understood and completely convinced that solutions (1) describe the nodal 

structure of wave shells of atoms. Thus, we have come to the discovery of a shell-nodal 

(molecule-like) structure of atoms that atoms are elementary molecules of nucleons. 

 

Fig. 1. Particular solutions of the wave equation in spherical polar coordinates. 

      

     A graphical representation of the solutions, indicating their relation to the description of the 

atoms and revealing the primary nature of the observed periodicity of the chemical (and other) 

properties of the elements of the periodic table, is shown in Fig. 2.  

     We assigned serial numbers only to the main potential polar-azimuthal nodes (shown in 

dark circles). Only symbols of atoms having external wave shells, fully complete and half-

completed with the given nodes, are indicated in the figure. 

      Thus, the physical meaning of the solutions (presented in Fig. 1), previously unknown in 

physics, was discovered in this way. The above solutions showed that atoms are wave 

formations and their structure is identical to the nodal structure of standing waves in a spherical 

field. 

     The nodal structure of each subsequent atom, from the lightest to the heaviest, is different. 

This is due to the different number of nodes in their external wave shells. Changing the number 

of nodes characteristic to the outer shell of the previous atom by one more is accompanied by a 

rearrangement of the spatial disposition of the nodes. As a result, a more complex nodal 
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structure is formed, different from the previous one, inherent in the subsequent havier 

individual atom. 

 

 

Fig. 2. The first graphical representation of solutions (1), indicating their relation to the 

description of the nodal structure of atoms, and demonstrating the periodical quasi-similarity of 

the nodal structure of wave atomic shells.  

      The collateral (unnumbered, empty) potential polar-azimuthal nodes, depicted by the 

smallest white circles, first appeared in the external shell of the silicon atom (l = 3,  m = ± 1) 

and further in the external shell of the germanium atom (l = 4, m = ± 1). 

      Apparently, the phenomenon of semiconductivity of Si and Ge is caused precisely by the 

presence of such nodes in their external shells: two in Si and four in Ge, respectively. 

     The external shell of the gadolinium atom (belonging to the same group with C, Si, and Ge) 

contains six such empty collateral nodes compared the four main nodes filled with coupled 

nucleons. Maybe for this reason gadolinium is characterized by the highest capture cross 

section of thermal neutron among all elements. Such a large capture cross-section makes it 

possible to use gadolinium in controlling a nuclear chain reaction and for protection against 

neutrons. 

     Three more atoms, whose outer shells have collateral nodes, are 40Zr, 72Hf , and 84Po.  
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     We note here only a few features, which we immediately noticed, starting to analyze the 

obtained solutions, which we would like to draw the attention of readers. 

    Sequence numbers 1, 2, 3,. .., 110, which we assigned to the principal potential polar-

azimuthal nodes, correspond to the atomic numbers Z of the elements of the Periodic Table. 

     Nucleon molecules (“atoms”), symbols of which are indicated in Fig. 2 at the corresponding 

fully completed and half-completed shells and subshells (with the even number of nodes in 

them), differ from others (not indicated here) for the above reason by the more equilibrium 

structure of their external wave shells.  

     Nucleon molecules (“atoms”) having fully completed l-shells (from l=1 to l=5) are, 

respectively:   

   2He,  10Ne,  28Ni,  60Nd,  110Ds    (l=1, 2, 3, 4, 5) 

     Nucleon molecules (“atoms”), the outer shells of which are quasi-similar fully completed m-

shells (subshells of the l-shells), are:  

  6C, 14Si, 32Ge, 64Gd    (m=±1)   (see Fig. 3)        

            22Ti, 40Zr, 72Hf     (m=±2)         

                          52Te, 84Po    (m=±3)        

                    

Fig. 3. Outer quasi-similar shells of elementary nucleon molecules (”atoms”) of the 4th group 

of the periodic table of elements. 

     Nucleon molecules (“atoms”), the outer shells of which are similar completed and half-

completed (indicated in Fig. 2 in dotted circles) m-shells, are as follows: 

   10Ne, 18Ar, 36Kr, 68Er    (m=±2)           

                  28Ni,  46Pd, 78Pt    (m=±3)         

                   60Nd,  92U    (m=±4)    

      External nodes of uncompleted external shells and subshells: half-completed (shown 

above) and partially filled, such as the shells of 3Li, 4Be, 5B or 7N, 8O, 9F, etc. are in equatorial 

plane (z=0), like the shells of 10Ne,  28Ni … Such shells have any-fold symmetry, including 

forbidden by mathematical laws of crystallography. This follows from corresponding 

noninteger solutions, which describe intermediate states [4, 5]. 

     So, analyzing solutions (1), we came to the discovery of the molecule-like structure of 

atoms. Atoms are elementary molecules of nucleons whose structure is identical to the nodal 

structure of standing waves in a spherical wave field-space. 

     All details about the solutions of the wave equation, including presented in the form shown 

above and in other forms, are considered in [3, 4]; some details can also be found, for example, 

in [5].  

     In our further consideration, we will refer to Fig. 2.  
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2. The g-lepton structure of nucleons 

In accordance with the basic axiom of dialectical philosophy and its logic (dialectics), all 

objects and phenomena in the Universe, including particles at all its levels, have the wave 

nature. This axiom is in the basis of the WM. 

 Accordingly, the structure of all particles should be described by well-developed methods 

of the physics of waves and, in particular, by the general (“classical”) wave equation 
2

2 2

ˆ1ˆ 0
c t

 
 


. This equation admits a particular solution, which is a complex (potential-

kinetic) function of three variables, 
,

ˆ ˆˆ ( , , ) ( ) ( ) ( )l l m mAR          . The latter has the form 

of a product of three separate functions: radial, polar and azimuthal, dependent on one 

variable, kr  , , and , respectively.  This solution describes the standing waves (location 

of nodes and antinodes) in a spherical space, and, as we have shown, the shell-nodal structure 

of “atoms”. 

Accepting the above axiom, it is natural to assume that solution (1) describe also the 

internal shell-nodal structure of particles of the lower (subatomic) level, in particular, the 

internal shell-nodal structure of nucleons (protons and neutrons). 

Really, in two parts of the article [6, 7], we have shown that nucleons (protons and 

neutrons) most likely consist of g-leptons.  

By analogy with the structure of elementary nucleon molecules ("atoms") of the nucleon 

level, nucleons, at the g-lepton level of the Universe, have a shell-nodal structure similar to the 

shell-nodal structure of a silicon atom with atomic number 14 (having 14 nodes, according to 

solutions of the above wave equation, filled with coupled nucleons). 

Indeed, let the mass of the g-lepton in units of the mass of the electron me be exactly a 

multiple of a quarter of the fundamental period-quantum lge [8],   

eeg mmem 21881769.6810lg2)4/1( 2  .   (2) 

     The masses of the proton and neutron in the same units are equal, respectively, to 

ep mm 1526675.1836  and en mm 683645.1838 .  (3) 

Therefore, due to the relation  

95273397.26/ gn mm      (4) 

and taking into account a certain value of the binding energy of g-leptons caused by the mass 

defect phenomenon, influenced on the resulting mass of nucleons, it is clear that the mass 

number of nucleons at the g-lepton level should be somewhat larger than 27.  

Based on this, we hypothesized that protons and neutrons represent at the g-lepton level, 

respectively, two stable isotopes of the silicon atom, Si28

14
 and Si29

14
, having the same shell-

nodal structure. 

The nodal structure of Si28

14
 is presented separately in Fig. 4, in full agreement with 

solutions of the wave equation, depicted in Fig. 2.  

The second stable isotope Si29

14
differs from Si28

14
 by the presence of yet one nucleon, which 

is located in the central polar potential-kinetic (“0”) node. 

The relative disposition in a neutron, considering as an analogue of the stable isotope of the 

silicon atom 14Si, of four wave spherical shells (I - IV) and the spatial arrangement in them of 
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the 14 potential polar-azimuthal nodes, filled with coupled g-nucleons (numbered dark circles), 

are shown in Fig. 5. 

 

Fig. 4. The symbolic representation of the components of the shell-nodal structure of the Si28

14
 

silicon atom in accordance with the solutions shown in Fig. 2. 

 
Fig. 5. The g-nucleon shell-nodal structure of the neutron (n), identical with the shell-nodal 

structure of the silicon atom 14Si, following from solutions of the wave equation, 

We are considering a neutron having a structure in the form, shown in Fig. 5, as one of the 

isotopes of the simplest hydrogen atom – protium H1

1
, that is, as an analog of the stable silicon 

isotope 29

14 Si .  

Compared to the proton ( Si28

14
 analog), the neutron additionally contains one g-lepton in the 

central polar node (marked with a cross in Fig. 5).  

Being bound in an atom, a neutron is stable, but in a free state it decays during s1000   

into a proton, electron, and neutral g-lepton (antineutrino ~ , according to nuclear physics): 

gepn   .     (5) 

The shell-nodal structure of 14Si (Fig. 4 and 5) is more complex than the shell-nodal 

structure of carbon 6C [2]. Silicon 14Si has by two shells (III and IV) and, accordingly, eight 

nodes more (at 2,2  ml  and 1,3  ml ) than carbon 6C.  

The first inner shell (I) having two polar-azimuthal nodes (1, 2) is the shell of the helium 

atom [1]. The second inner shell (II) having four polar-azimuthal nodes (3, 4, 5, 6) is the outer 

shell of the carbon atom. The third inner shell (III) is the outer shell of the neon atom. Shell IV 

is the outer shell characteristic of a silicon atom. 

In accordance with the shell-nodal atomic model, the unique (specific) structure of the 

outer shells mainly determines the properties of individual atoms, distinguishing them from 

each other. The outer shell of 14Si has two collateral nodes that are not filled with nucleons in 

stable silicon isotopes.  
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Silicon is the first element of the periodic table in which, with increasing atomic number z, 

collateral nodes appeared (unnumbered in Fig. 2 and other figures). Amplitudes of polar-

azimuthal functions (see the image in the upper right corner in Fig. 1), determining their spatial 

location on radial shells, are significantly less than the amplitudes of the corresponding 

functions that determine the position of the principal nodes numbered in the figures. 

Apparently, for this reason, collateral nodes are less suitable places for the equilibrium 

arrangements of nucleons in them. 

The above structural feature of silicon (the presence of empty collateral nodes) provides the 

possibility of movement in its inner space, not just particles, which are much smaller than 

nucleons, but also the movement of the nodal nucleons themselves. The so-called hole 

conductivity in semiconductors, apparently, is due to the existence of such nodes.  

From the point of view of the shell-nodal model, a neutron having the structure presented 

above is an isotope of the simplest hydrogen atom – protium H1

1
. Accordingly, it has the 

magnetic moment, the negative value of which, according to the CODATA [9], is 

12610)23(96623640.0   TJn     (6) 

This is approximately 1.46 times less in absolute value of the positive magnetic moment that 

the proton has.  

      As a system of a proton and an electron, the structure of the neutron with the surrounding 

field, following the WM, looks like it is conditionally shown in Fig. 6. 

 

Fig. 6. Neutron as an analogous of the silicon atom Si29

14
 with the surrounding field.  

 

     In this figure, rn is the radius of the outer shell of the neutron; e is an electron; r? is the inner 

radius of the outer neutron shell; 2g is the principal potential polar-azimuthal node filled with 

two coupled g-leptons; n  is the magnetic moment of the neutron. The 29
th

 g-lepton is located 

in the central polar potential-kinetic node. 

According to the mass defect formula, the binding energy of a proton, consisting of 28 g-

leptons, is equal to 

2 2( ) (28 ) 62.79769638g pE p c m c m m MeV      ,   (7) 

so the binding energy per one g-lepton is 

MeVpApEp 242774871.2)(/)()(  ,    (8) 

where 28)( pA  is the mass number of the proton at the g-lepton level. 
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Corresponding binding energies for the neutron ( 29)( nA ) are 

MeVmmcnE ng 36715712.71)29()( 2  ,   (9) 

MeVnAnEn 460936452.2)(/)()(  .    (10) 

Now, relying on the shell-nodal g-lepton structure of nucleons, we can proceed to the 

derivation of the binding energy of deuterium and tritium. 

The main (dominant) component of these energies is the energy of strong bonds between 

all pairs of coupled g-nucleons, approaching to each other, belonging to g-nucleon nodes of 

two (during the formation of deuterium) and three (during the formation of tritium) contacting 

nucleons. The derivation of the above energies became possible due to the discovery (within 

WM) of the Universal Law of Central Exchange and the corresponding formulas arising from 

the law [4]. 

 

3. Calculation of the binding energy of deuterium H2

1
  

With strong binding of two nucleons, a neutron and a proton, a stable isotope of a hydrogen 

atom, deuterium H2

1
, is formed.  

The g-lepton (shell-nodal) structure of both nucleons is identical. In the process of binding, 

the nucleon spaces penetrate each other, so that the partial overlap of the spherical shells of 

both nucleons occurs, as shown in Fig. 7.  

 

Fig. 7. The formation of deuterium from nucleons of the shell-nodal structure. 

 

With this, all g-lepton nodes of one nucleon and corresponding nodes of another nucleon 

(both filled with coupled g-leptons), draw together at the distance r determined by solutions (1) 

of the wave equation.  

As a result of the binding of the approaching pairs of coupled g-leptons, 14 helium-like 

structures [1] (depicted by dashed circles in Fig. 7) are formed. The distance r between the g-

lepton nodes in them (Fig. 8) is determined by the roots zmn of the Bessel functions [10], 

krz nm , .      (11) 

 

 
Fig. 8. The helium-like structure formed on the basis of binding of two pairs of coupled g-

leptons. 
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     An unknown value in this expression is the wave number k equal to the inverse value of the 

wave radius  , 

/1k .      (12) 

     The wave radius   determines the characteristic radii (11) of elementary spherical and 

cylindrical surfaces determined by the roots of the Bessel functions with zero and extremal 

values. At the atomic and subatomic level, 
ek /1 , where cme

810603886538.1   

follows from the DM [11, 12].  

     The wave radius 
e  is responsible for the arrangement of nucleons in atoms, and hence in 

crystals, molecules, etc., at the strictly defined absolute distances. Indeed, a double value of the 

wave radius, wave diameter, is equal to the average value of the constants of crystal lattices: 

82 3.2 10 ,e cm       (13) 

     Thus, the wave radius at the nucleon level 
n  is equal to (coincides with) the fundamental 

wave radius of exchange at the atomic and subatomic levels 
e
, 

een c  / ,     (14) 

which defines the principal parameters of atomic spaces. Herewith, 

ee me /       (15) 

is the fundamental frequency of exchange at the atomic and subatomic levels (the frequency of 

the so-called “electrostatic field”). 

The inner spherical space of a nucleon, like the inner spherical space of an atom, is a 

system of wave shells, whose relative radii are determined by the same roots of the Bessel 

functions, nmzkr , . The wave shells of nucleons with intrinsic nodes, in which g-particles 

are localized, form a superfine discrete structure of atoms.  

Solutions (1) of the wave equation give the relative values of the radii and the relative 

value of the wave radius   for spaces of different levels. Obviously, the inner spaces of 

nucleons, which are spaces of a more discrete (g-lepton) level, have a wave radius ƛg smaller 

than the radius ƛe characteristic for nucleon-level spaces.  

The absolute value of ƛg should be sought from the general conditions for wave processes 

occurring at different levels.  

We will determine ƛg by the scale analogy, which exists between wave processes at any 

levels and, in particular, between those that occur at the levels of nucleons and g-leptons. The 

fact is that the fundamental relations, existing between the main wave parameters at both 

levels, are preserved. 

One of such fundamental relations is the relation that exists between the radius r of the 

wave spherical shell of a particle and the fundamental wave radius ƛ of exchange of the 

particle with other particles and the surrounding field.  

For the proton, the theoretical radius of its wave shell obtained by the formula following 

from the DM [11, 12] , where 3

0 1g cm   and 1 r , at the condition 1)( 2 perk , is 

cmmthr pp

83
1

0 10510578616.0)4/()(  .   (16) 

The fundamental wave radius at the atomic and subatomic levels is 

cmc ee

810603886538.1/  .    (17) 
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      The ratio of the above fundamental parameters characteristic of the proton is, with 

sufficient accuracy, equal to the fundamental constant , 

 141311617.3)(/ thrpe .    (18) 

This ratio shows that the wave radius
e , in value, is a half of the length of the equatorial 

circumference of the wave spherical shell of a proton.  

Obviously, the same ratio should be valid for the radius rg of the wave spherical shell of g-

lepton, and the wave radius g , characteristic for particles of the g-lepton level, so that we 

have the right to assume that 

)(/ thrgg .     (19) 

Hence, for  

cmmthr gg

83
1

0 10170370509.0)4/()(     (20) 
 

where gmg

2610214420763.6  , the wave radius of the g-lepton level g is 

cmthrgg

810534.0)(  .    (21) 

     We see that the value of g  is close to the Bohr radius cmr 8

0 10529.0  . It is quite 

possible that the more accurate derivations will lead to the complete coincidence of these 

values, that is, to the equality  

0rg  .       (21a) 

     Indeed, we cannot exclude the equality of the above parameters, which both are the basic 

parameters of the wave sphere atomic space. 

Hence, taking the root of Bessel functions, 89357697.01,0,  yz nm , as in the case of the 

helium atom, we arrive at the following distance r (see Fig. 7) between two pairs of g-leptons  

in coupling nucleons, consisting of g-leptons: 

cmyr g

8

1,0 10477.0   .     (22) 

    This means that wave spherical shells of two H-atoms in the deuterium H2

1
 are partially 

overlapped as is shown in Fig. 9 (where cmrp

81051.0   (16)). Centers of masses of two 

constituent H-atoms are at the distance cmr 810477.0  , which is some less than the Bohr 

radius, 
0rr   . 

 
Fig. 9. The relative disposition of two nucleons in the deuterium atom H2

1
; 0rr  . 

At such conditions (distance r of the value (22)), the binding energy of two internodal g-

leptons (by one from each interacting nodes) in helium-like structure (Fig. 7, 8) is 

eV
r

q
E

g

g

6

0

2

10070246848.0
8




 ,    (23) 

where 
1710161576228.1   sgmq egg  
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is the exchange charge of the g-lepton, which is an elementary quantum of exchange at the 

atomic (including interatomic, molecular) and subatomic (including g-lepton) levels. Recall, at 

these levels, the fundamental frequency of exchange is e. 

In accordance with the shell-nodal g-lepton-structure, the proton has 28 g-leptons (in 14 

nodes, each of which is filled with 2 coupled g-leptons). The neutron, in comparison with the 

proton, has one more g-lepton located in the central polar node (see Fig. 4 and 5).  

Thus, due to the fact that all g-leptons participate in the exchange (interaction), we have 

28.5 pairs of interacting g-leptons in H2

1
. Hence, the total binding energy, associated with the 

internodal exchange (interaction) of all g-leptons belonging to two interacting nucleons, is 

MeVEE gexchg 002.25.28,  .    (24) 

      The obtained value is close to the known value for the deuteron binding energy calculated 

by the mass defect formula, 2 2.224DE c m MeV   . Energy ,g exchE  (24) is the main (1st) but 

not the only component of the total binding energy of H2

1
 (as in the case of the binding 

energies of helium and carbon atoms considered earlier [1, 2]).  

      Following the analogy between wave processes at the two levels under consideration 

(nucleon and g-lepton), it is necessary also to take into account (2nd) the energy of coupling of 

two g-leptons in their nodes and (3rd) the binding energy of g-lepton nodes with the shells in 

which these nodes are located.  

However, we will not derive the remaining (2nd and 3rd) constituents here. The derivation 

of the third component, we have already shown for helium and carbon atoms [1, 2].  

Therefore, it will be quite enough to get here an approximate estimate of the two other 

constituents of the binding energy mentioned above, based on the identity that exists between 

the nodal structure of helium and the nodal helium-like structure of a system of two pairs of 

coupled g-leptons (Fig. 8). 

The following ratio, / 12.72482He DE E  , exists between the total binding energy of helium 

He4

2
, 28.3HeE MeV , and its second constituent, the binding energy of coupled nucleons in 

its nodes, 2.224DE MeV  (deuterium binding energy).  

Let us assume that the same ratio keeps and for the corresponding energies of the g-lepton 

helium-like structure shown in Fig. 8. In this case, because the total binding energy of a 

deuteron is equal to 2.224 MeV (according to the formula 2

DE c m  ), the binding energy of 

all 28 g-lepton helium-like structures (“deuterons”) in all g-lepton nodes should be 

(2) /12.72482 0.175g DE E MeV  .    (25) 

And the binding energy per one g-lepton “deuteron” is 

keVg 25.62  .     (26) 

Hence, finally, we arrive at the following binding energy of H2

1
: 

)3()3()2(,

2

1 177.2)( gggexchg EMeVEEEHE  .   (27) 

Obviously, the contribution of the third constituent )3(gE , corresponding to the binding 

energy of all 28 g-nodes with their wave spherical shells will be less than the contribution of 

the second constituent estimated above.  
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Therefore, we assume that after adding of )3(gE  to the total energy we will closer approach 

to the value of 2.224 MeV that follows from the mass defect formula 2

DE c m  . 

4. Calculation of the binding energy of tritium H3

1
 

Let us proceed now to the derivation of the binding energy of tritium. The shell-nodal 

structure of three joined g-lepton nodes in tritium (belonging to three interacting nucleons), on 

the g-lepton level, recalls the nodal structure of helium isotope He6

2
 (Fig. 10).  

Appearance of two coupled g-leptons in the central polar node slightly changes (increases) 

the former equilibrium distance r existed between outmost pairs of g-leptons in the g-lepton 

helium-like structure shown in Fig. 8. 

The nearest to the cmr 810477.0   equilibrium distance between g-lepton nodes, 

admitted by solutions of the wave equation, is the distance equal to the wave radius of the g-

lepton level, cmg

810534.0   (21). Therefore, we accept this value of the distance between 

the outermost g-lepton nodes in tritium (Fig. 10) for further calculations, so that we have 

cmr g

810534.0   , cmrr g

8

21 10267.02/   .   (28) 

 

Fig. 10. The nodal structure of helium isotope He6

2
, and the local helium-like structure formed 

under the joining of three g-lepton nodes in tritium considered as the p-n-n (proton-neutron-

neutron) system. 

     We also assume that the exchange interaction in the presented structure exists between 

every two partially overlapped pairs as is shown conditionally by two arrows in Fig. 9. 

The main constituent of the binding energy in this case, the energy of internodal exchange 

between two nearest nodes, is 

MeV
r

q
E

g

g 140493696.0
8 10

2




 .    (29) 

     Hence, the total binding energy of internodal exchange, with allowance for all g-lepton 

bonds in tritium, is 

MeVENE gbondsgexchg 07838752.8,,  ,    (30) 

where 5.57, bondsgN  is the number of internodal g-lepton bonds (p-n and n-n, 28.5+29) in 

tritium consisted of two neutron and one proton. 

According to equality (25), the second constituent that took into account the binding 

energies of all g-lepton pairs in the nodes of tritium, is  

MeVENE gnodesgg 2625.02)2(   ,     (31) 
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where 3 14 42g nodesN nodes     is the number of completed polar-azimuth g-lepton nodes (or 

the number of coupled g-leptons). 

Without the smallest in value contribution of the third constituent Eg(3) (related to the 

binding energy of g-lepton nodes with the shells of their localization), we obtain finally the 

following magnitude  

MeVEEHE gexchg 34088752.8)( )2(,

3

1  .    (32)  

For comparison, the binding energy of tritium, originated from the formula on mass defect, is 

MeVmcE 481821.82  .    (33) 

     Thus, we have an approximate coincidence in the resulting data obtained by two ways, 

different of principle. 

 

5. Conclusion 

     The capabilities of the modern nuclear model of atoms are limited by the description of the 

observed phenomena.  

      The real picture of how the main constituents, nucleons and electrons, are located inside 

atoms is unknown. It is an insoluble problem in principle, as long as the nuclear model exists in 

physics. According to the latter, all nucleons in an atom are concentrated in its center, in a 

small nucleus, in the form of a dense heap of very small and extremely dense (averaging about 

2.3×10
14

 g/cm
3
) balls. Therefore, the binding energy of atoms is determined in physics solely 

indirectly - by the formula of mass defect. 

     Our research over the past few decades has revealed the internal structure of atoms. They 

showed that atoms have a nuclear-free molecule-like structure. To date, there is a lot of 

evidence confirming the validity of this discovery, arising, as we have shown, from solutions 

of the wave equation. The molecular-like structure of atoms (non-nuclear) explains many 

phenomena, which are impossible to explain in principle in the framework of the nuclear 

structure of atoms.  

     Due to the fact that the molecule-like structure of atoms is more adequate to reality, it 

became possible (for the first time in physics) to directly calculate the binding energy of atoms 

that was demonstrated by the example of helium, carbon, deuterium and tritium atoms, in three 

parts of this article. 

At the end, we can add the following. 

Solutions of the wave equation are applicable to the field-spaces for all levels of the 

Universe, including levels of spaces of various elementary particles. Therefore, the following 

assumption makes sense.  

In accordance with the dynamic model of elementary particles and the dialectical concept 

of infinite divisibility of particles [6, 7], it can be assumed that g-lepton, judging by its 

reference mass mg=68.22me, is a complex atom-molecule of the electron level (e-level) with an 

ordinal number 32z .  

Such an atom-molecule, having a mass number more than 68 in a hypothetical periodic 

table of particles of the e-level, corresponds to the 32Ge germanium atom in Mendeleev’s 

periodic table. “More” than 68, because we must take into account the binding energy of the 

constituent particles, electrons, that is, a mass defect. Mass numbers of stable isotopes of 

germanium are in the range of 70-76.  
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Interestingly, the germanium atom, an analog of the g-lepton at the e-level, and the silicon 

atom, which is an analog of nucleons at the g-lepton level, are in the same 4th group of the 

periodic table. 

Thus, we can say that all elementary particles ultimately consist of electrons. And the mass 

spectrum of the vast variety of e-class particles, ranging from the electron to the g-quantum 

also exists in nature.   
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