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In this paper we analyze Schrödinger's wave equation in comparison to the ord inary wave equation de-

scribing arbitrary period ic processes running in space and  time.  Schrödinger’s approach gave birth to abstract 
phenomenological constructions, which do not reflect the real picture of the micro-world ; it has by now ex-
hausted  itself completely.  So a comprehensive re-analysis of foundations of quantum mechanics is urgently 
needed; first of all, interpretation of Schrödinger's equation and  complex -functions.  Here, we emphasize 
unknown (or un-d iscussed) features of Schrödinger's equation.   
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1.  Introduction 
The Schröd inger wave equation (SE) is commonly regarded  

as one of the postulates of quantum mechanics (QM).  However, 
the time is ripe for clarifying the meaning of the SE, in order to 
understand  the origin of numerous contrad ictions and  faults 
inherent in QM.  In this paper, continuing the analysis of the 
basis of QM started  in [1], we emphasize unknown (or un-
d iscussed) features of Schröd inger's wave equation. 

Schröd inger’s equation appeared  in the years of a wild  
blooming of formalism, which was represented , first of all, by 
positivism, machism, pragmatism, and  other philosophical 
trends, denying the objective world  [2].  Arbitrary mathematical 
constructions (in the spirit of a free play on notions) were the 
characteristic result in physics from these philosophical currents.  
By virtue of this, a reasonable logic was absent or insignificant in 
such constructions.  Schröd inger, a representative of those years, 
designed  his equation following the spirit of aforementioned  
ideological trends in physics.  Nevertheless, we should  give 
Schröd inger his due, because the positivistic style d id  not satisfy 
him.  He had  a propensity for actual realism, and  was restrained  
in regarded  to new fashion trends.  But he was under the influ-
ence of that time.  Schröd inger’s mathematical model is currently 
represented  in the form of generalized  and  extended  equations, 
includ ing the relativistic invariant of them, etc. 

In the 1920’s, the SE began to be regarded  as a major 
achievement of scientific thought.  It became the basis for lectures 
on atomic physics in universities.  The common opinion is that 
the SE (in view of its modifications considered  in modern QM 
and  QED) proved  its valid ity by the conformity of its solutions 
with vast amounts of experimental data and  the co-ord ination 
with general physical notions.  

Now, at the beginning of the 21st century, let us look at the 
events of those years once more and  give an objective estimate of 
the past.  For clearness and  simplicity, we will not use the opera-
tor formalism as far as possible.  In the initial variant, the SE had  
the following form: 

  (1.1) 

Its structure had  a quite artificial character, and  rested  upon the 
operator and  variational methods. 

The wave function  satisfying the wave equation (1.1) is 
represented  as 

   (1.2) 

where  is the complex amplitude of the 
wave function, because 

   

The multiplicative form of the amplitude −function allows 
separation of Schröd inger's equation (1.1) into equations for the 
rad ial , polar , and  azimuth  functions: 

 (1.3) 

An equation for the time component of  is ; 

its simplest solution is . 
The , , and   equations were known in the theory of 

wave fields.  Hence, these equations presented  nothing new.  
Only the  was new.  Its solution turned  out to be d ivergent.  
However, Schröd inger together with H. Weyl (1885-1955, Ger-
man mathematician), contrary to the logic and  all experience of 
theoretical physics, artificially cut off the d ivergent power series 
of the rad ial function  at a -th term.  This allowed  them to 
obtain the rad ial solutions, which, as a result of the cut off opera-
tion, actually were the fictitious solutions.  For hydrogen-like 
atoms, the rad ial function has the following form 

 (1.4) 

where , ,  is the Bohr rad ius; 

 is the Laguerre polynomial of the power  
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that power being simultaneously the parameter for cutting off 
the d ivergent series; and  

  (1.5) 

is a normalizing multiplier. 
Since the rad ial equation in (1.3) contained  the energy of in-

teraction of the electron with the nucleus, , it was 
natural to expect that Eq. (1.3) would  ‘give out’  this energy as a 
result of the solution under the definite conditions.  Indeed , the 
formal cutting off leads to the d iscrete series of values of the total 
electron energy: 

  (1.6) 

where the sum  (equal to ) was called  the 
main quantum number.  

The formula (1.6) creates the illusion of a solution to the 
problem.  Actually, in a strictly scientific sense, we deal here 
with the plain mathematical ad justment to Bohr postulates.  The 
rad ial solution (1.4) for the hydrogen-like atom, after replacing 

 with , takes the form 

  

where  (1.7) 

and   

  

With use of the accepted  designations, Schröd inger's - 
function (1.2) is presented  as 

  (1.8) 

where .  Let us begin an analysis 
of Schröd inger's equation from the aforementioned  rad ial solu-
tion. 

2.  Radial solution 
Schrödinger's rad ial equation (1.3) contains only the wave 

number .  The number  has an auxiliary character.  Accord-
ingly, the rad ial function should  be presented  in the form 

.  Taking into consideration these remarks, Schröd inger's 
elementary -function (1.8) can be rewritten as 

 (2.1) 

where  is the spatial 

-function. 

Accord ing to the QM conception, the extremes of the rad ial 
functions  define the rad ii of shells of the most probable 

states: , where  is the number of the root of the 

extremum.  However, for the overwhelming number of cases, 

these roots are not  equal to integers squared; i.e.,  

(where ), and  hence, they  deny  the cut -off condit ion 
(1.6).  Such roots define energetic levels that do not exist in Na-
ture: 

 . (2.2) 

For example, the rad ial function , corresponding to the 

numbers  and   ( ) is 

  (2.3) 

One-d imensional and  two-d imensional graphs of the rad ial 

component of density of probability , as a function of the 

d istance along the rad ius , are presented  in Fig. 2.1. 

 

Figure 2.1.  The density of hypothetical probability of s-state, 

, for Schrödinger’ s -function with the parameters, 

 and  ; (a) one-d imensional, (b) two-d imensional. 

The rad ial function squared , , has the maximum in the 

origin of coord inates.  There are also two smaller maxima, defin-
ing the two shells of the most probable localization of the elec-
tron (if we will strictly follow the QM interpretation of -
function).  Extremes of the rad ial function are as follows:  

  

 ,  

 

At the same time, accord ing to the cut-off condition, only the 

rad ius  defines the stationary shell of the electron cor-
responding to this function.  Two vertical lines in Fig 2.1a, at the 
d istance equal to 9 from the coord inate origin, ind icate its loca-
tion.  As we see, there is no maximum (shell) of such rad ius 

among extremes of !  It is no wonder that the rad ial function 

 is ‘ignorant’ .  It does not ‘know ’  that it represents by itself 

the reduced  function (obtained  as a result of the cut-off opera-
tion) and , therefore, it cannot define anything here, includ ing 
“the most probable localization of the electron”. 
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Thus, accord ing to the condition (1.6), energetic ‘levels’  
(states) (2.2) must not exist.  If we suppose that they exist, then 
these levels must formally transform the radial function into a diver-

gent functional series because Eq. (2.2), where  
( ), does not satisfy the cut-off condition (1.6) where 

.  Such an absurd ity appeared  because of the artificial and  
invalid  cutting off of the power series.  

The quantum numbers of the SE are usually compared  with 
the quantum numbers in Bohr-Sommerfeld ’s generalized  theory 
of the hydrogen atom.  Between 1913 and  1926, the Bohr-
Sommerfeld ’s theory took root in minds; as a result, the superfi-
cial resemblance of its quantum numbers to those of the SE was 
groundlessly used  by founders of QM.  As an analog of the azi-
muth number , the magnetic number  of Bohr-Sommerfeld ’s 
theory was accepted .  The number  plays the role of the azi-
muth number nϕ, which defines (along with the main quantum 
number ) the smaller half-axis of the elliptical electron or-
bit .  The larger half-axis of the orbit , defining the 

electron’s total energy on the orbit, in Bohr’s-Sommerfeld ’s the-

ory, depends only on the main quantum number : .  
Such a formal juxtaposition must mean that the wave function in 
the SE (1.1) contains elliptical orbits in the form of ‘electron 
clouds’ .  All these definitions are the fruit of fantasy.  In fact, the 
SE describes only the circular orbits, but not mystic clouds-
orbitals that convincingly were shown in [1].  If we assume that 
the electron’s motion can be the elliptic one, then such orbits 
must pierce the shells of the stationary states.  Accord ingly, 
when an electron recedes from H-atom, moving along a station-
ary elliptic orbit, it must absorb energy, at the transition from 
one shell to another, and , at the approaching to H-atom, it must 
emit energy of the same value.  The energetic transitions within 
the orbit w ill be determined  by irrational numbers that are not 
observed  in reality.  Apart from this, such strange orbits cannot 
be regarded  as stationary. 

3.  The Wave Number k 
We can assume that, at the initial stage of his work, 

Schröd inger could  not do without the ord inary wave equation, 
describing arbitrary period ic processes running in space and  
time: 

  (3.1) 

Presenting the -function in the form , 
where  is its amplitude (a complex magnitude, in a 
general case), we obtain 

  

Hence, the wave equation (3.1) can also be presented  as 

  (3.2) 

where  is the wave number of the field .  
Comparing Eqs. (3.2) and  (1.1), we find  what the wave number  
in the SE is: 

 . (3.3) 

This means that the w ave number in Schröd inger’s rad ial equa-
tion is a quant ity  that  varies cont inuously  in the radial direc-
t ion.  Is it possible to imagine a field  where the wave number, 
and  hence the frequency, change from one point to another in the 
space of the field?  Of course, it is not possible.  Such w ave ob-
jects do not  exist  in Nature! 

The wave number  is a constant parameter of wave objects.  
It can take a definite series of d iscrete values depending only on 
the boundary conditions.  Accord ing to the cut-off condition 
(1.6), the wave number (3.3) is defined  by the following formula: 

  (3.4) 

From this it follows that the wave number  is a real number 

only under the condition .  Therefore, one should  men-
tion the limiting sphere of wave processes in the atom.  The ra-
d ius of the sphere is equal to the doubled  rad ius of -th Bohr 
orbit (orbital): 

  (3.5) 

In a case where the wave number  also takes imaginary 
values, the field  will not be a wave field , and  hydrogen-like at-
oms will be surrounded , beyond  their spheres of the rad ius , 
w ith the field  of the aperiodic structure.  However, this com-
pletely contrad icts reality.  Thus, a limiting sphere bounds 
around  the Schröd inger atom.  Beyond  the sphere, it is impossi-
ble to speak about the structure and  wave properties of the atom.  

Accord ingly, the normaliz ing factors of radial funct ions 
have a condit ional character, because they are determined  by 
the integrals with an upper limit of integration, equal to infinity 
but not to the limiting rad ius (3.5).  These remarks are valid  also 
for formulae of averaged  values, as, e.g., an average value of in-
verse d istances, defined  by the integral 

  (3.6) 

There is also another reason why this expression is incorrect.  As 
a matter of fact, the rad ial functions  define the shells of the 
most probable values of rad ii in accordance with the quantum 
mechanical interpretation of the wave function.  These rad ii form 
a discrete series, which cannot  be averaged, as it is impossible to 
average an inverse series of d istances.  Indeed , suppose we need  
to know the mean wavelength of the hydrogen-atom spectrum, 
for example, the Balmer series.  Of course, we can calculate it, but 
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it is a meaningless operation, because such an averaged  wave 
does not exist in nature.   

In spite of all fittings, the mean rad ius of an electron orbit, 

  (3.7) 

is not proportional to .  Moreover, the rad ial spheres define 
the orbits of the most probable states; therefore, the rad ii of sta-
tionary electron orbits are constant within the corresponding 
spheres.  Thus, the averaging (3.7) has no meaning.  

Let us turn now to Schröd inger's initial report, where the SE 
(1.1) was first derived  on the basis of the operator and  varia-
tional methods.  We will consider this in an elementary form.  
Any material object is characterized  by the kinetic and  potential 
energies, which define its total energy 

  (3.8) 

We introduce the scalar d imensionless -function, complex in 
general; its field  grad ient is the momentum of the micro-particle, 
defined  by the equation 

  (3.9) 

where  is some elementary action, needed  for realization of the 
law of equality of d imensionalities of the left and  right parts in 
Eq. (3.9);  is the imaginary unit.  Inasmuch as, in a general case, 
the -function is complex, components of the momentum are 
also, in general, complex.  However, their real parts (by defini-
tion) represent the ord inary projections of the momentum along 
the coord inate axes.  Thus, the real part of the complex momen-
tum defines the momentum of the micro-particle: 

  (3.10) 

Relying on the expression (3.9), we can represent the energy 
(3.8) in the following way 

  

or  (3.11) 

Let us now introduce operators of the total and  potential en-

ergies,  and  , accord ing to the following expressions: 

 ,    (3.12) 

Substituting  and  , in Eq. (3.11), w ith these operator expres-
sions, we will have 

  (3.13) 

or  (3.14) 

In a case of a hydrogen-like atom, we seek the field  of such a 
-function for which the following equalities must exist: 

 ,    (3.15) 

As a result, if we accept , we arrive (as Schröd inger as-
sumed) at the wave equation for the electron in the H-atom (1.1). 
Taking into consideration the expression (3.3), we reduce Eq. 

(1.1) to the standard  form (3.2), . 
Where is the blunder of principle in the above derivation of 

(1.1)?  As is known, any  w ave equat ion is the equat ion of mass 
processes.  It describes the result of the interaction of particles 
and  sub-particles in space, from which the waves arise.  Wave 
mass processes represent the kinemat ic level of mot ion, or the 
level of superstructure, below which is the level of interact ion, or 
the level of basis.  Because of this, the SE is unable to describe the 
mot ion of a single electron.  In spite of this, at that time, physi-
cists groundlessly ascribed  to the SE a nonexistent aptitude (un-
natural for wave equations in principle): they assumed it must 
describe the motion of the single electron in the hydrogen atom.  
This was a gross blunder. 

The introduction of potentials, or potential energies of an in-
teraction, into kinematic wave equations, means a lack of under-
stand ing of d iscriminate d ifferences between the dynamic basis 
of a w ave; i.e., the level of mass coordinated interact ion, and the 
level of superstructure of w ave, i.e., the ordered kinemat ic mo-
t ion. 

Thus, the d ivergence of the power series of the rad ial func-
tion in the SE is the effect of mixing the kinemat ic and dynamic 
levels of mot ion, which were formally (incorrectly in essence) 
joined  together in the SE. 

4.  Wave Equation of a String 
For confirmation of the above analysis, let us present one 

more example concerning the wave field  of a homogeneous 
string of the length , fixed  at both ends.  Every point of the 
string is defined  by the coord inate , and  the state of its motion 
at time , by the d isplacement from the equilibrium, and  the 
motion itself, by the complex -function  

  (4.1) 

The -function satisfies the wave equation  

  (4.2) 

Here,  is the one-d imensional Laplacian operator;  
is the wave speed  in the string defined  by the following expres-
sions: 

 ,    (4.3) 
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where  is the tension,  is the mass,  is Young modulus, 
 is the lengthening, and   is the area of the cross-section of 

the string. 
The ‘real’  component of the complex d isplacement 

 is called  the potential displacement, and  the 
‘imaginary’  component , the kinetic displace-
ment.  The conjugated  d isplacements make it possible to describe 
more completely the wave field  of the string, as the potential-
kinetic wave field.  An elementary solution of the wave equation is 
defined  in the form of the product of the string’s spatial d is-
placements, represented  by the function , and  the time 
function : 

  (4.4) 

where  is the wave number, and   is the cir-
cular frequency of oscillations. 

The existence of two spaces-fields (4.4) allows representation 
of the wave equation of the superstructure (4.2) through equa-
tions of the space and  time of the superstructure: 

  (4.5) 

  (4.6) 

These equations define two elementary plane-polarized  trans-
verse waves, traveling towards each other.  

The kinetic energy of any atom of the string, at the level of the 
w ave basis of the field , can be presented  in the following forms 
(details are in [2]): 

  (4.7) 

where  (4.8) 

is the wave action of an atom during the transmission of an exci-
tation along the whole length  of the string, it is the 
action at the level of the wave basis; ; ; 

 is the mass of an atom of the string.  On this basis, the wave 

number squared   [in (4.5)] can be presented  in the following 
form 

  (4.9) 

Then the amplitude equation for the wave motion of the string 
(4.5) takes the form of the SE:  

  (4.10) 

Introducing some potential energy of interaction of atoms 
 (that, unconditionally, is inadmissible for the wave equa-

tion; we have stated  that already) and  designating the total en-
ergy of oscillations of an atom of the string in a cross-section  
by the letter , we can write: 

  (4.11) 

On the basis of such a ‘generalization’ , the wave number be-
comes 

  (4.12) 

and , corresponding to it, the frequency of the wave field  of the 
string becomes 

  (4.13) 

Both become functions of the coord inate  of points of the string, 
 and  .  Actually, the wave number  is the con-

stant quantity, defining some frequency of the wave field  , 
which bonds the wave system in a single whole. 

Accord ing to such a ‘generalization’ , all points of the string 
must oscillate with d ifferent frequencies.  The absurd ity of the 
above-described  formal ‘deduction’  of the relation (4.12) is clear 
and  no sane physicist w ill agree with the ‘generalized ’  wave 
equation of the string in the form that follows: 

  (4.14) 

The falsity and  senselessness of such a formal generalization-
derivation [as is actually also realized  in the SE (1.1)] is obvious.  

5.  On the Physical Meaning of <-functions 
Let us present Eq. (3.2) in the form of the product of -

function by the operator binomial as 

  (5.1) 

Because the -function is unequal to zero, we obtain the op-
erator equation for the simplest value of the operator  (regard-

ing  as a variable operator magnitude): .  Solving 
this quadratic equation, we have 

 ,   and     (5.2) 

since .  In the wave -field , the momentum (3.9) of an 
arbitrary particle takes the form 

  (5.3) 

or, in the scalar form, 

  (5.4) 

What does this equality represent by itself?  Any physical pa-
rameter  (of an arbitrary physical wave field ) has its own fun-
damental wave measure, or a period-quantum .  Using this 

quantum, the value of a parameter  can be presented  by the 
quantitative relative -measure: 

  (5.5) 
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In a general case, the parameter  is the complex quantity 

  (5.6) 

Let us agree to call the ‘real’  part of Eq. (5.6) the ‘kinetic’  compo-
nent, and  the ‘imaginary’  part, the ‘potential’  component of the 

-parameter (the usefulness of this terminology is justified  in 
[2]) 

By virtue of this, -measure of the zero physical d imensional-
ity will be a complex wave function w ith the argument, 

  (5.7) 

which ind icates that the quantitative measure of the -
parameter is changing in space and  time.  The presence in (5.7) of 
the imaginary unit  is not casual.  It simplifies calculations and  
has a deep philosophical meaning [2, 3].  The argument (5.7) 
meets general physical principles.  

Thus, the wave structure of any physical parameter  is pre-
sented  by the following scalar measure: 

  (5.8) 

If  is the momentum, then Eq. (5.4) can be written as 

  (5.9) 

The relative elementary harmonic measure 

  (5.10) 

of any parameter  satisfies the d ifferential equations with: 1) 
the spatial partial derivatives of the second  order 

, ,  (5.11) 

or  (5.12) 

and  2) the partial time derivative of the second  order 

   (5.13) 

Equations (5.12) and  (5.13) form the w ave equat ion of the 
harmonic <-funct ion: 

  (5.14) 

Obviously, the sum of elementary measures constitutes the 
measure of the general character; therefore, we assume that Eq. 
(5.14) also defines the wave field  of the measure of an arbitrary 
parameter.  Because in any point under the steady-state wave 
motion the product of its spatial (amplitude)  and  time 

 components represents -function, the wave equation 
(5.14) therefore falls into the amplitude and  time equations: 

  and  .  

The constant parameters,  and  , are determined  on the 
basis of boundary conditions.  Since these equations describe -
measures of arbitrary physical parameters, the d ifference of their 
wave structure comes down to the d ifference of kinematic types 
of the corresponding wave fields.  The basic wave fields are the 
plane, cylindrical, spherical, and  complicated  (spherical-
cylindrical) fields.  Therefore, these fields, to an equal degree, 
successfully describe not only the atomic structure [1, 4], but also 
the structure of mega-objects that is demonstrated  in [2]. 

6.  Conclusion 
As we have seen, the numerous contrad ictions and  blunders 

of the abstract mathematical model that was put forward  by 
Schröd inger, and  which is inherent in QM, do not endure cri-
tique.  However, QM theorists continue developing this model.  
It is currently represented  in the form of generalized  and  ex-
tended  equations, includ ing the relativistic invariant of them, etc. 
Maybe such a status quo exists because all faults found , includ ing 
those stressed  here, are as yet unknown to the wide scientific 
community.  But the basic SE (and  consequently any other equa-
tions based  on the basic one) is in fact false.  It has significance 
only from the point of view of history of the philosophical and  
logical errors of the past.  The errors have made QM into a great 
caricature about the world  of real wave processes, while the ex-
tensive publicity created  an illusion as if mankind  deals with a 
great theory.  

In fact, QM is at best a phenomenological theory, with the 
definite fitting of it to the experiment.  And  what is more, the 
possibilities of modern mathematics are so impressive that it can 
represent any abstract absurd ity as a profound  theory (or its de-
velopment), and  fit that to any experiment.   

At the present stage of development of science, in particular 
of atomic physics and  atomic technologies, QM is omnipresent. 
In the course of many decades, ideologists have forgotten the fact 
that the correspondence of any theory with experiments done so 
far does not quite mean that the given theory is true and  
uniquely possible.  The opinion that QM perfectly describes the 
micro-world  has been propagated  and  strengthened  in the con-
sciousness of people.   

But QM does in the highest degree render a d istorted  de-
scription of the micro-world .  QM so significantly d istorts the 
real picture of the micro-world  that it becomes a world  of theo-
retical monsters and  quantum chaos, but not the world  of real 
images.  This situation is a definite danger to technological pro-
gress.  Technology deals with real material objects, and  we live 
in a real world ; accord ingly, our knowledge about Nature must 
also be concrete and  truly reflect reality, insofar as far as possi-
ble.  In particular, the development of nano-technology, where 
d imensions of devices tend  towards magnitudes comparable 
with atomic sizes, requires as early as possible knowing the real 
spatial structure of atoms.  However, that is not even an objective 
of modern physics because of the domination of QM, with its 
postulate on the impossibility of imagining a clear spatial struc-
ture of micro-objects at the atomic and  subatomic levels, 
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