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Particular solutions of the wave equation in
spherical polar coordinates

1 0*¥
A¥= g 0 M

The wave equation (1) admits the particular solutions in the form

W(r.0)=Pr)e™ (o=k) 2)
where

Y(r) = R(kr)©(0)®(¢)
is a particular solution of the corresponding Helmholtz equation
A+ k> =0, 3)

The separation of variables leads to one time equation

d*T -
dr’ = (4)



and three equations of the spherical space:
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where p=kr and T=Of .

The time component is usually presented in the form

f(coz‘) = "™

)
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The general form of the solutions of the wave equation (1) for the

spherical (longitudinal, central) component of ¥, in spherical polar

coordinates, is

¥ =R, (kr)®,,, 0)D, (o) (0t)

9)



where ¥ = jé: (kr)©,,, ©)D,,(9) is the spatial factor of the wave function
of physical space; /=0,1,2,...; m=0,£L+2,...,£ [

The radial component R,(kr) of the spatial factor describes the
density of potential-kinetic probability of radial
displacements, the polar component ©,,(0) - the polar

displacements, and (AD,H (¢) — the azimuth displacements.

Under the above conditions, at integer values of the wave number m, an
elementary solution of the wave equation has the standard

1
form. If we present the number m in the form 7 :523 , where s € N | we

arrive at

= 4R (p)O,,(0)e™ = A1/ 2pH  /(P)O,,(0)e™™ (10
or

U= A7/ 200, (P)£iY, 1 (9))O, ()™, (11)

where A, is the constant factor, p =#kr;

; A (p) J, }/(p) and Y;+/(p) (or NV, (P))arethe

Hankel, Bessel and Neumann functions, correspondingly.



Two terms in (11) are the potential and kinetic spatial

constituents of ‘¥ function; they have the following form

¥, = e, (p)/p=A1/2pJ,,, (P)O,,, (O)e™ (12)
Y, =tds,(p)/p==14 Tc/2pY£+% PO, ,, (0)e™" (13)
The half-integer solutions of (3), at / =m=(1/2)s  have the form
0 = AR, (), (O)e ™" (14)
where
R, (p) =/ 2pH.. (p) (15)
©,(0)e e =C sin% O(cos Z @ tisin Z ?)

The polar extremes of half-integer solutions lie in the
equatorial plane.



The Radial Solutions
for the Wave Equation
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Plots of the First Six
Radial Spherical Functions




Reduced Polar-Azimuthal
Potential Functions
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raphs of the polar-azimuthal functions
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A schematic drawing of the
nodes and a toroidal vortex-ring
INn the carbon and neon atoms
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0, 1, 1s, 2, 25 are the ordinal number of the polar potential-Kinetic
nodes (located along the z-axis, m = 0); 1, 2,..., 10 are the ordinal
numbers of principal polar-azimuthal potential nodes. The nodes 1
and 2 belong to the internal spherical shell, | = 1; the nodes 3 - 10
are located on the external spherical shell, | = 2.
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A solution of the wave equation for a spherical shell of the atoms with the wave
(quantum) numbers | =2, m = 0: (a) for a section along the z-axis (in a plane
perpendicular to the plane (x, y)), (b) for a section z = 0 in a plane (X, y); 2n and 2s
are, respectively, the north and south polar nodes of the shell
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(a) Plots of potential-kinetic polar and

potential polar-azimuthal functions;
(b) polar and potential nodes on spherical shells;
(c) symbolic designhations of the carbon atom



kinetic polar and
polar-azimuthal functions;
(b) polar and potential

(a) Plots of potential
potential

nodes on spherical shells;

(c) symbolic designhations of the neon atom



nodes on spherical shells;
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(c) symbolic designhations of the oxygen atom



The Relative Atomic Mass

A= Z Zpknpk + Z(Zgingi +Zvinvi)
k [

K, I are the numbers of polar (m = 0) and polar-azimuthal (m # 0) shells, respectively:;
Zpk is the number of polar nodes of k-th polar shell;

Zgi and Zvi are the number of principal and collateral polar-azimuth nodes, respectively,
of i-th polar-azimuthal shell;

1ok, Mgi, and 7vi = 0, 1, or 2 is the multiplicity of filling of the nodes by H-atoms.



The Matrices of the
Nodes of Carbon and Oxygen Atoms

(potential-kinetic polar and
potential polar-azimuthal)

1 0 0 1 0 0
ICml=12 2 0 0] =12 2 0
2 4 0 2 4 2

The matrices of filing of the nodes by H-atoms in the stable,
lightest, and heaviest isotopes of the carbon and oxygen atoms
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Isotopes of Carbon
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The Carbon Atom Structure
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An elementary cell of
graphite
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Lattice constants of graphite indicated in brackets correspond to
Imaginary crystal lattice parameters iIf one account that the
lattice is formed from single carbon atoms.



Formation of the C2 Molecule

Overlapping, “confluence”, of all approaching nodes (and toroidal
rings not shown here) of two carbon atoms in the unit whole.

(An image of C2 does not differ from the image of a single C atom)



Precise calculations of atomic positions and the length
of interatomic bonds are based on an iterative method.
The latter includes a comparison and fitting of measured
Intensities of a reflected beam with calculated ones and
with due account of Rutherford-Bohr’s nuclear model of
atoms, so as long as will not be achieved an adequate
correspondence of two sets of the values.

Obviously, if only a structural analysis would be based
on a shell-nodal (i.e., multi-center or molecule-like)
atomic model, the gauging would be different; depending
on what Is accepted in the capacity of an elementary
“building block™ of crystal lattices — a molecule-like atom
or a carbon dimer, C or C2 In our case.

Assuming that the lattice constants of crystals accepted
INn physics are precise and congruent to reality, we must
accept that an elementary “building block” of carbon
crystals is the C2 diatomic molecule.



Carbon Dimer (C2)

INn fact the major observable product of Ceo fragmentation.

Being a very effective growth species, it can rapidly
Incorporate into the diamond lattice leading to high-film
growth rates*.

* [D. M. Gruen, at al, Turning Soot Into Diamonds With
Microwaves, Proceedings of the 29t Microwave Power

Symposium, Chicago, lllinois, July 25-27, 1994].

And as follows from the work referred below,

“the C2 radical was considered to be responsible for the
formation of graphite”**

** [H. C. Shik, et al., Diamond and Related Materials, 2,
531 (1993)],



A schematic view of self-binding
(assembling) of two-dimensional
carbon compounds
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Benzene



A part of a graphene sheet




Buckminsterfullerene C,,



The Formation of Bonds in Diamond

(a) A plane structure of the carbon atom (or molecule C,);

(b) a displaced position of its internal shell with nodes 1 and 2
around the z-axis by the phase angle a = n/4 ;

(c) the bindings (dashed lines) between displaced internal
nodes 1 and 2 of different carbon dimmers, resulted in a
face-centered cube structure of diamond
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The face centered cubic
diamond lattice structure



Two Possible Ways (c, d) of the Formation of
the methane molecule CH,

Frontal view View from the top
Conditional I
~Le” i designation
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.~ Aproper shell of An improper shell
the second order e ’ (the shell of neon)

H Conditional
designations

(a, b) The shell-nodal structure of carbon with indication of two nearest,
proper and improper, external spherical shells with their potential
polar-azimuthal nodes designated by dotted lines.



One more possible way
of the formation of CH,

(A case of the participation of the second order proper radial shell
of C in the formation of molecular bonds, resulted in a plane
structure of the molecule)

(@)An internal structure of the carbon atom 12¢c ; (b) all chemically
adsorbed individual H-atoms are in one plane with the completely
filled by coupled H-atoms proper potential nodes of carbon



The Structure of Bindings In
Typical Hydrocarbon Compounds
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A schematic view showing
how C — C bonds are formed
INn hydrocarbon compounds

carbon carbon

dimers, C,

.......

ethane, C,H, B o benzene, C.H,

a) b) c)

The character of overlapping (two- and three-multiple)
of polar-azimuthal nodes for the case of single carbon
atoms (a) and their dimmers (b, ¢)



Edges of
graphene
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Two Images of graphene edges
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Two Images of graphene edges
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Two images of graphene edges

ZA

bnzbiz

fﬂ]ﬂ/ﬂl\i\f\

o \I\I\I
F \JF :
fl\l\l\ \[ \I\ A

@ )
% (\I\I\IKJWI\!\J\ %
O \F\J\ \m al\/\l[\L <«

1

fﬂ!\l\l\f\l\r\l\fjf\l

H.\Ia\/\l\). _[\ \[ N
o\,ﬁ{%_umm D ,,x, XX

© AN \li/ﬂl\[\[
%

N

—(\

ha (\I\lﬂi\l\!\l\/

@g-lﬂlﬂ)\r\lhf\[ $

LN N A, L P N S
bozbry

R
)0
&

ppzb1z
B N ]\I\{

uIXI\l Lf\/
uw_r

L/\J\

S \IMW
S
\JMW M[\I\JM\

@yp

\Iﬂ[\!\l f\f\rﬂr\f I\!\!

.

I\lL/L[\l\/\l\/\l\l\lh/\

"

i S ‘Fﬁ!\l\f N \
/\/\i\lkr\l\f\lhﬂ\lu

% AN N l\/\ $
%_,\,\r QQ %

f_\. l l\ l \]_\iw\

NN NN N
bozbry

a
INncorrect

(overall used)

Correct



Direct Image of a Single-Layer
Graphene Membrane*

(with our findings)
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| [ (atoms appear white,
the scale bar is 2 A)

*[J.C. Meyer, C. Kisielowski, R. Erni, M.D. Rossell, M.F. Crommie, and A. Zettl. Direct imaging of
lattice atoms and topological defects in graphene membranes. Nano Lett. 8 (11), 3582-3586 (2008)]




Mechanism of the formation of typical
metastable pentagon-heptagon (5-7)
defects inherent in graphene

(two pairs of five- and seven-membered rings of carbon nodes)
2 heptagons

Figure 3*. ...
(b) Stone-Walles (SW) defect
(c) same image with atomic

configuration superimposed

s

i - i - ’ :-‘
*1J. C. Meyer at al.,Direct Imaging of Lattice Atoms and Topological Defects
in Graphene Membranes, Nano Lett, 2008, 8 (11), 3582-3586]



Formation of 4 pairs of five- and
seven-membered rings of
carbon nodes '

“The study of defects,vacancies, and edges >_2_
in graphene, as well as absorbates, is —<
important for basic understanding of >"27
this novel material as well as for potential >_
electronic, mechanical, and thermal

_<
applications”* >—<2+<

I S S04 T NI

- »
Figure 3*. ... '. - ’. .Q '. - OO
(h and i) Defect image and . . .. ? . .
configuration consisting . . » . .:
LA o >

of. fc';);:r pentago?s fi g)reen) " . - ‘ .
and heptagons (re . . . .
n..t.:o.:.‘b.:

*[J. C. Meyer at al.,Direct Imaging of Lattice Atoms and Topological Defects
in Graphene Membranes, Nano Lett, 2008, 8 (11), 3582-3586]



Our comments to the article

[Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Griineisen parameters,
and sample orientation, Phys. Rev. B 79, 205433 (8 pages), 2009 by T. M. G. Mohiuddin at al.]

?

2
There is not indicated an amount of strain. And how the
polar lobes form will be changed when the strain tends to

»o Zero. What temperature? There are no explanations,

~ why maximal intensity of G* peak is more than G-. Etc.

Which one is the x axis?

Explanation

4 .
- light insi
¥ ,/'polar‘?zaﬁon Our insight

random orientation £ ‘” random oriepriation
IR eSS SO N T Vo Gramaxs) oo 74 L (smamaxiy)
- J 11.3°(modern theory) ”“
. 34 } x ) i 6 v apingo

Polar diagram . “(‘ixﬂ ) (Unknown axis of graphene: ‘;} olar d’a)g’;‘"}’ ﬂ' 34 (experimental)
(experimental), ) which one of three?) experimental) -

’ : X

Because the orientation of the x axis was not defined, Graphene is crysiallographically A major crystallographic axis
how one needs to understand: and physically anisotropic of graphene - only one of three.

“We thus get the orientation of the graphene crystal

with respect 10 the known strain axis”? (page 203433-6)
Mutually perpendicular axes of polar lobes are just characteristic crystallographic axes of graphene monolayer! The angles [Ref, Fig
6] between the strain axis and the axes of the lobes are equal to 34° and 569, they are accidental in value, depending on an
accidentally oriented graphene monolayer on a substrate in the experiment. A small difference in a maximal intensity of G* and G
peaks is related with the anisotropy of electrical conductivity. Thus, actually, authors of the paper, unknowing about this (not
understanding it), have defined actually the orientation of characteristic crystallographic axes on a tested graphene monolayer, thus
confirming that graphene is anisotropic.



A conditional image of the formation of the _
H,O molecule, and the density of probability ¥
(contour plots) of the localization of matter in an
external shell for the planesx =0,y =0,andz=0

5
The dashed smaller arrows in the pictures indicate the main directions
of external internodal bindings inherent in the water molecule



A Possible Way of the Formation
of the oxygen molecule O,




One More Possible Way
of the O, Formation

(an intermediate state)

zZ
3 T
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One more possible way of the formation of
oxygen O,, and the possible nodal structure
of carbon oxide CO, carbon dioxide CO,,
and the ozone molecule O; (a)

(b) symbolic designations of the compounds distinguished by the
two-multiple overlapping of proper nodes of constituent atoms



Two possible ways of the
formation of hemioxide N,O

T T —"'\':. - Sig ] 0 7
¥ X 1=3; m=%x3

(a) an intermediate (unfolded) image of one of the ways, (b) another of the
possible nodal bindings in the hypothetical N,O structure. The equatorial
densities of probablllty‘P(contour plots) are drawn for external shells of
separate atoms, ‘30 and 3N (the upper row, left and right); for the shell at | =
2,m = +2 (the section for z = 0); and for the external shell of the resulting

formation (I=3, m = +3)



The Shell-Nodal Structure of the

Frontal view From top

Q) Five conjugated | Ne spaces

(a, b, ¢) the nodal structure of the atoms O, Ne, and Al and their conditional designations for different
projections; the unfolded (d) and closed (e) conditional images of the resulting Al,O, structure



Formation of One-Atom-Thick
Layer of Hexagonal Boron Nitride

Nitrogen Boron B ¥
"4 z
o éOO
Front view ~.._$-Q O  F0%
%%% - ke Mutually
I | E;}uatorla / E perpendicular
l prane l Z axes

Top view i:_




CONCLUSION

We are on a threshold of
uncovering
the “genetic code”
of structural variety In
nature

http://shpenkov.janmax.com/CarbonOxygen.pdf
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