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Chapter 3 
 

AN ANALYSIS OF THE BASIC CONCEPTS OF 

QUANTUM MECHANICS AND NEW 

(DIALECTICAL) SOLUTIONS FOR THE FIELD 

OF A STRING AND H-ATOM  
 

 

 

1. Schrödinger's equation and the myths of quantum       

mechanics 
 

Schrödinger's equation appeared in the years of a wild bloom of formalism, 

which was represented, first of all, by positivism, machism, pragmatism, and 

other trends of philosophical thought, denying the objective world. Arbitrary 

mathematical constructions, on the basis of a free game of notions, were the 

characteristic result of these philosophical currents for physics. By virtue of this, 

a reasonable logic in such constructions (theories-myths) was almost absent or 

insignificant. Schrödinger, a representative of those years, has designed his 

equation, exactly following the spirit of aforementioned ideological trends in 

physics. 

Nevertheless, we should give Schrödinger his due because the positivistic 

style did not satisfy his. He had a propensity for actual realism and restrainedly 

regarded to new fashion trends – the physical mathematical advance-guard. But 

he was under the influence of that time. 

In the 1920’s, Schrödinger's equation began to be regarded as the major 

achievement of scientific thought. It became the basis for lectures on atomic 

physics in universities. The common opinion is that Schrödinger's equation 

proved its validity by the conformity of its solutions with the vast amount of ex-

perimental data and the co-ordination with general physical notions. However, 

all this is only emotional judgements.  

Now, at the beginning of the 21
th
 century, let us look at the events of those 

years from the point of view of dialectics and give an objective estimation of the 

past. Unfortunately, the mathematical model, put forward by Schrödinger, is cur-
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rently represented in the form of generalized and extended equations, including 

the relativistic invariant of them. 

In the initial variant, Schrödinger's equation had the following form 
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Its structure had a quite artificial character and rested upon the operator and 

variational methods. 

The wave function, satisfying the wave equation (1.1), is represented as 

    )(),,()()()( tTrtTR(r)    ,   (1.1a) 

where )()(),,(  R(r)r   is the complex amplitude of the wave func-

tion, because 
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The multiplicative form of the amplitude function allows dividing of 

Schrödinger's equation (1.1) into the equations of the radial R(r) , polar )(lm , 

and azimuth )(m  functions: 
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An equation for the time component of  is 
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The simplest solution of Eq. (1.2c) defines the function of time of the form 
tieT  . The last three equations were known in a theory of wave fields. 

Hence, these equations presented nothing new. Only the radial equation (1.2) 

was a new one. Its solution turned out to be the divergent one. However, 

Schrödinger together with H. Weyl (1885-1955, German mathematician), con-

trary to the logic and all experience of theoretical physics, artificially cut off the 

divergent power series of the radial function )(rR  at a κ-member. This allowed 

them to obtain the radial solutions, which, as an effect of the cut off operation, 

actually are the fictitious solutions. For hydrogen-like atoms, the radial function 

has the following form 
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κ is simultaneously the parameter of cutting off of the divergent series, 
Z

a
a 0  

is the large half-axis of the orbit, 0a  is Bohr radius, and 
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is the normalizing multiplier. 

Since the radial equation (1.2) contains the energy of interaction of the elec-

tron with the nucleus 
r

Ze

0

2

4
 , therefore, it was naturally to wait that Eq. (1.2) 

will “give out” this energy as a result of the solution under the definite condi-

tions. Indeed, the formal cutting off leads to the discrete series of values of the 

total electron energy 
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where the sum 1 ln   has the name of the main quantum number and 

equal to 1, 2, 3, … The formula (1.5) gives birth to an illusion of the solution of 

the problem. Actually, in a strictly scientific sense, here we deal with the plain 

mathematical adjustment to Bohr postulates. The power two (as in the case of 
2n ) is a usual result for the many second order equations. 

In the case of H-atom ( 1Z ), the expression for energy (1.5) is simplified 
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The radial solution (1.3) for the hydrogen-like atom takes the form 
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where 
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is the standard Laguerre polynomial. 
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With use of the accepted designations, Schrödinger's wave function (1.1a) 

is represented as 

   )(),,()()()( tTrtT(r)R nlmlmnl    ,  (1.9) 

where 

   )()(),,(  mlmnlnl (r)Rr  .    (1.9a) 

Schrödinger's radial equation (1.2) contains only the wave number l. The 

number κ has an auxiliary character. Accordingly, the radial function should be 

presented in the form ),( lR . Taking into consideration these remarks, 

Schrödinger's elementary -function (1.9) can be rewritten as 

  )()()()();,,(,, tT);(RtT mlmllmlm     , (1.9b) 

where 

   )()();,,(,   mlmllm );(R     (1.9c) 

is the spatial  ,lm -function. 

According to the quantum mechanics conception, extremes of radial func-

tions nlR , define the radii of shells of the most probable states: inlar max, , 

where i is the number of the root of the extremum. However, for the overwhelm-

ing number of cases, these roots are not equal to the integers squared, i.e., 
2

max, minl   (where m=1, 2, 3, …), and hence, they deny the cutting off condi-

tion (1.5). Such roots define the energetic levels, nonexistent in nature: 
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Thus, according to the condition (1.5), the energetic levels (states) (1.10) 

must not exist. If we suppose that they exist, then these levels must formally 

transform the radial function into a divergent functional series because Eq. 

(1.10), where m2
 (m = 1, 2, 3,…), does not satisfy the cutting off condition 

(1.5), where = n
2
 (n = 1, 2, 3,…). Such an absurdity appeared because of the 

cutting off, artificial and invalid, of the power series.  

The wave numbers of Schrödinger's equation are usually compared with the 

quantum numbers in Bohr-Sommerfeld’s generalized theory of a hydrogen atom. 

Between 1913 and 1926, the Bohr-Sommerfeld’s theory took roots in minds; as 

a result, the superficial resemblance of its quantum numbers was groundlessly 

used by founders of quantum mechanics.  

As an analog of the azimuth number m, the magnetic number m of Bohr-

Sommerfeld’s theory was accepted. The number l plays the role of the azimuth 

number n, which defines (along with the main quantum number n) the smaller 

half-axis of the elliptical electron orbit nnab 0 . The larger half-axis of the 

orbit a, defining the electron’s total energy on the orbit, in Bohr’s-Sommerfeld’s 
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theory, depends only on the main quantum number n: 2
0naa  . Such a formal 

juxtaposition must mean that the wave function in Schrödinger’s equation (1.1) 

contains the elliptical orbits in the form of “electron clouds”. All these defini-

tions are a fruit of fantasy. In fact, Schrödinger’s equation describes only the 

circular electron orbits, but not mystic clouds-orbitals. We will make sure of it 

below.  

Creation of any theory requires, at the initial stage, very important prelimi-

nary research work. This work, as a rule, is never published and remains forever 

unknown. Moreover, it can contain errors, which are hidden in the final variant 

of the theory. In publications, only the results of the work are presented, which, 

too often, are far from the initial sketches of the theory, both in the form and 

contents. 

Let us remember the birth of Maxwell’s electromagnetic theory. His con-

temporaries noted that Maxwell constructed his theory not following strict logic. 

Maxwell can plainly turn down a member, replace an unsuitable sign by the op-

posite one in an expression, substitute a meaning of a letter, etc. H. Poincaré 

noted, in connection with this, that since Maxwell’s arguments and calculations 

contain difficult to correct errors, all six of Maxwell’s equations should be ac-

cepted as an initial hypothesis, as postulates upon which we must rest in elec-

tromagnetic theory. 

Schrödinger acted in approximately the same way. And we can assume that, 

at the initial stage of his work, of course, he cannot do without the use of the or-

dinary wave equation (for an arbitrary periodic process, running in space and 

time): 
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Presenting the -function in the form tiezyx  ),,( , where ),,( zyx  

is its amplitude (a complex magnitude, in a general case), we obtain 
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Hence, the wave equation (1.11) can be presented as 

     02   k ,     (1.12) 
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k  is the wave number of the field. 

Comparing equations (1.12) and (1.1), we find that the wave number k in 

Schrödinger’s equation is: 
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It means that the wave number (entered in Schrödinger’s radial equation) is 

a continuously variable, in the radial direction, quantity. Is it possible to image 

a field, where the wave number and, accordingly, the frequency change from one 

point to another in the space of the field? Of course, it is not possible. Such 

wave objects do not exist in nature! 

The wave number k is a constant parameter of wave objects. It can take a 

definite series of discrete values only in dependence on the boundary conditions. 

 According to the cutting off condition (1.5), the wave number (1.13) is de-

fined by the following formula 
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From this it follows that the wave number k is a real number only under the 

condition 22anr  . Therefore, one should mention the limiting sphere of wave 

processes in the atom. The radius of the sphere is equal to the doubled radius of 

n-th Bohr orbit (orbital): 

     
2

max 22 anrr n  .           (1.14) 

In a case when the wave number k also takes the imaginary values, the field 

will not be a wave field and hydrogen-like atoms will be surrounded, beyond 

their spheres of the radius maxr , with the field of the aperiodic structure. Howev-

er, this is completely contradictory to reality. Thus, the limiting sphere bounds 

around the Schrödinger atom. Beyond the sphere, it is impossible to speak about 

the structure and wave properties of the atom.  

The normalizing factors of radial functions have a conditional character, 

because they are determined by the integrals with an upper limit of integration, 

equal to infinity but not to the limiting radius (1.14). These remarks are valid 

also for formulae of mean values. In particular, a mean value of inverse distanc-

es, defined by the integral 
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has a conditional character. Moreover, this expression is incorrect. As a matter 

of fact, the radial functions nlR  define the shells of the most probable values of 

atomic distances in accordance with the quantum mechanical interpretation of 

the wave function. These distances form a discrete series, which cannot be av-

eraged, as it is impossible to average an inverse series of distances. Indeed, sup-

pose we need to know the mean wavelength of a hydrogen atom spectrum, for 

example, Balmer series. Of course, we can calculate it, but it is a senseless op-

eration, because such a mean wave does not exist in nature. 

In spite of all fittings, the mean radius of an electron orbit, 
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is not proportional to n
2
. Moreover, the radial spheres define the orbits of the 

most probable states; therefore, the radii of stationary electron orbits are constant 

within the corresponding spheres. Thus, the averaging (1.15a) has no sense. Fur-

ther, even if we assume that the electron’s motion can be the elliptic one then 

such orbits must pierce the shells of the stationary states. Accordingly, when an 

electron recedes from H-atom, moving along a stationary elliptic orbit, it must 

absorb energy, at the transition from one shell to another, and, at the approach-

ing to H-atom, it must emit energy of the same value. The energetic transitions 

within the orbit will be determined by irrational numbers that is not observed in 

reality. Apart from this, such strange orbits cannot be regarded as stationary. 

 Let us turn now to Schrödinger's initial report, where the equation of quan-

tum mechanics (1.1) was first presented on the basis of the operator and varia-

tional methods. We will consider this in an elementary form.  

Any material object is characterized by the kinetic and potential energies 

which define its total energy 
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We introduce the -function of zero dimensionality, complex in a general case; 

its field gradient is the momentum of a microparticle, defined by the equation 
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where   is some elementary action, needed for realization of the law of equality 

of dimensionalities of the left and right parts in Eq. (1.17); i is the imaginary 

unit. Inasmuch as, in a general case, the -function is a complex one, compo-

nents of the momentum are also, in a general case, complex ones. However, their 

real parts (by definition) represent the ordinary projections of the momentum 

along the coordinate axes. Thus, the real part of the complex momentum defines 

the momentum of a microparticle: 

       iRep .     (1.18) 

Relying on the expression (1.17), we can represent the energy (1.16) in the 

following way 
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Let us now introduce operators of the total and potential energies, Ĥ  and 

Û , according to the following expressions: 

     HE ˆ , UU ˆ .     (1.20) 

Substituting E and U, in Eq. (1.19), with these operator expressions, we will 

have 
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In a case with hydrogen-like atoms, we seek the field of such a -function 

for which the following equalities must exist: 
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As a result, if we accept 1Z , we arrive (as Schrödinger assumed) at the 

wave equation for the electron in the H-atom 
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Taking into consideration the expression (1.13), we deduce Eq. (1.23) to the 

standard form: 

     02   k .     (1.23a) 

The following question arises: why did Schrödinger not use the standard 

wave equation? There are several answers to this question. They reflect the dif-

ferent aspects of a situation, fully developed in physics in the 1920’s. 

Before the appearance of Schrödinger’s works, the quantum ideology has 

already exerted its influence on the minds of physicists. Quanta, as the elements 

of discreteness, as the atoms of properties, had been considered separately from 

the wave nature of matter-space-time. And this situation still remains, in physics, 

up to this day.  

In fact, nature is the symmetrical structure of contradictions inseparable 

from each other. This also concerns such a contradictory pair as discontinuity-

continuity. Wave fields represent continuity; periods-measures of properties of 

wave objects and fields represent its opposite side  discontinuity. These peri-

ods-measures are the physical manifestation of what is accepted as the discrete 

nature of matter. 

In wave processes, transitions from one dynamically stable state to another 

usually occur through jumps. These jumps by themselves represent transient 
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processes, occurring during a very short time, which physics, all too often, can-

not detect. A specific complicated frequency structure is inherent for a jump.  

For example, if we would attempt to hear the constant sound of a cross-cut 

saw (or a plane metal plate), beginning from a low frequency and progressing to 

higher frequencies, while fluently bending the saw, we will find that frequency 

will not have changed continuously. Frequency can suddenly increase, by jump, 

up to a relatively high value. We can also find such an unstable state when an 

insignificant change of the pressure on a fiddlestick changes the note *. 

Quantum formalism has interpreted quantum jumps (in accordance with 

Einstein’s views) as transitions from one energy level to another without inter-

mediate states, i.e., as processes occurring out of space and time. That is, they 

are equivalent to transitions with infinite speed. Einstein suggested such a primi-

tive model. His energy quantum arises instantly with the wave speed of motion. 

And H. Weil, in the spirit of the age, “helped” Schrödinger (by means of the 

formal cutting off of the infinite solutions) to obtain a theoretical justification for 

such a myth. However, Schrödinger had understood all the conditionality of this 

solution, and he had rightly called the quantum jumps, out of space and time, the 

“cursed” jumps. 

As known, any wave equation is the equation of mass processes. It de-

scribes the result of the interaction of particles and subparticles in space, from 

which the waves arise. Wave mass processes represent the kinematic level of 

motion, or the level of superstructure, below which is the level of interaction, 

or the level of basis. 

Because of this, Schrödinger’s equation is unable to describe the motion of 

the only electron. In spite of this, at that time, physicists groundlessly ascribed to 

Schrödinger’s equation a nonexistent aptitude (unnatural for wave equations in 

principle). They assumed it must describe the motion of the single electron in the 

hydrogen atom. This was a gross blunder. 

An introduction, in kinematic wave equations, of potentials or potential en-

ergies of an interaction means a lack of understanding of discriminate differ-

ences between the dynamic basis of wave, i.e., the level of mass coordinated 

interaction, and the level of superstructure of wave, i.e., the ordered kinematic 

motion. 

The divergence of the power series of the radial function in Schrödinger’s 

equation is the effect of mixing the kinematic and dynamic levels of motion, 

which were formally (incorrectly in essence) joined together in Schrödinger’s 

equation. 

Such an approach exerted significant influence on the development of mi-

croworld theories. It gave birth to the phenomenological constructions and, cor-

respondingly, definite scientific schools. The latter are represented through 

numerous scientific journals, which take away science from the real picture of 

                                                           
* Gentill K., Acoustics, 4, 58, 1957. 
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the microworld. Things reached a crisis point; therefore, it is necessary to ana-

lyze in detail the errors of quantum mechanics, and, most of all, the logically and 

physically erroneous interpretation of complex -functions. 

For this purpose, we again return to operator formalism, which was created 

by “lazy” theorists, since operator methods are simpler than functional calcula-

tions. 

Let us present Eq. (1.23a) in the form of the product of the -function by 

the operator binomial as 

     0)( 2   k .     (1.24) 

Because the -function is unequal to zero, we obtain the operator equation 

for the simplest value of the operator  (regarding  as a variable operator mag-

nitude): 02  k . Solving this quadratic equation, we have 

    
2k , and ki ,      (1.25) 

since 2 . In the wave -field, the momentum (1.17) of an arbitrary particle 

takes the form 

       kp  i ,     (1.26) 

or, in the scalar form, 

       kip  .     (1.27) 

What does this equality represent by itself?  

Any physical parameter P (of an arbitrary physical wave field) has its own 

fundamental wave measure, or a period-quantum qP . Using this quantum, the 

value of a parameter P can be presented by the quantitative relative -measure: 

     
qP

P
 .      (1.28) 

In a general case, the parameter P is the complex quantity 

     pk ippP  .     (1.29) 

Let us agree to call the “real” part of Eq. (1.29) the “kinetic” component and the 

“imaginary” part, the “potential” component of P-parameter. (The usefulness of 

this terminology will be demonstrated later on) 

By virtue of this, -measure of the zero physical dimensionality will be a 

complex wave function with the argument, 

   )((arg zkykxktiti zyx   kr) ,   (1.30) 

which indicates that the quantitative measure of P-parameter is changed in space 

and time. The presence, in (1.30), of the imaginary unit i is not casual. It simpli-

fies calculations and has a deep philosophical sense, which will be revealed in 

the following chapters.  

The argument (1.30) meets general physical principles. Thus, the wave 

structure of any physical parameter P is presented by the following scalar meas-

ure: 
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    ))(( zkykxktiPP zyxq  .   (1.31) 

If P is the momentum, then Eq. (1.27) can be written as 

    ))(( zkykxktikp zyx   .   (1.32) 

The relative elementary harmonic measure 

    ))(exp( zkykxkti zyxm      (1.32a) 

of any parameter P satisfies the differential equations with: (1) the spatial partial 

derivatives of the second order 

  
 2

2

2
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


,      
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y
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,  
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z





,  (1.33) 

or   

     2222 )( kkkk zyx  ,   (1.33a) 

and (2) the partial time derivative of the second order 

     
 2

2

2






t
.      (1.33b) 

Equations (1.33a) and (1.33b) form the wave equation of the harmonic -

function: 

    
2

2

2
0

1

t








.      (1.34) 

Obviously, the sum of elementary measures constitutes the measure of the 

general character; therefore, we assume that Eq. (1.34) also defines the wave 

field of the measure of an arbitrary parameter. Because in any point under the 

steady-state wave motion the product of its spatial (amplitude) )(kr  and time 

)(ˆ tT   components represents -function, the wave equation (1.34) therefore 

falls into the amplitude and time equations: 

   02   k ,  T
t

T ˆ
ˆ

2

2

2





.   (1.34a) 

The constant parameters, k and  are determined on the basis of boundary 

conditions. But if these parameters are difficult to determine, then we have to 

remember that nature itself solves this problem. We need only find, empirically, 

a series of the discrete values of k and  and try to understand it. 

Since equations (1.34) and (1.34a) describe -measures of arbitrary physi-

cal parameters, the difference of their wave structure comes down to the differ-

ence of kinematic types of the corresponding wave fields. The basic wave fields 

are the plane, cylindrical, spherical, and complicated (spherical-cylindrical) 

fields. Therefore, these fields, to an equal degree, successfully describe not only 

the atomic structure, but also the structure of megaobjects. 
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2. -Functions of the wave field of a string 
 

First, for the sake of simplicity and clarity, we will consider the logic of er-

rors by quantum mechanics, analyzing oscillations of a homogeneous string. We 

are interested in small transversal oscillations of the string near the equilibrium 

(Fig. 3.1).  

 
 

Fig. 3.1.  On the problem of oscillations of a string with the length l, fixed at 

both ends; S is a cross-section of oscillations, m is the mass of an ar-

bitrary part of the string in the cross-section S. 

 

Every point of the string is defined by the coordinate z, the state of its mo-

tion in time t  by the displacement from the equilibrium, ),( tzx , and the mo-

tion itself  by the complex -function  

     ),(),(),( tziytzxtz  ,    (2.1) 

Displacements of points of the string from the equilibrium are equal to the real 

part of -function: 

     ),(Re),( tztzx  .    (2.2) 

For the description of oscillations of the string, we use Euler’s formula 

 sincos iei   with its famous imaginary unit i. In order to get rid of this 

unit, creators of quantum mechanics proposed the well-known interpretation of 

the wave -function for H-atom. On the occasion of this interpretation, an epi-

gram devoted to Schrödinger was spread among physicists. The epigram, com-

posed in English and German languages, ascribed to E. Hückel (1896-1980, 

German physicist-theorist), is as follows: 
 

 

Erwin with his psi can do 

Calculations quite a few  

But one thing has not been seen 

Just what does psi really mean? 

Gar Machens rechnet Erwin   

schon 

Mit seiner Wellenfunktion 

Nur wissen möcht’man gerne 

wohl 

Was man sich dabei vorstell’n 

soll? 
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This epigram rightly comments on the real situation concerning the inter-

pretation of the “psi” function. And what is more, a careful analysis brings to 

light the fact that Schrödinger’s calculations are not in conformity with experi-

mental data, which these functions (as is usually accepted) must describe. And 

we will demonstrate this below.  

In the case of the wave field of the string, -function satisfies the wave 

equation for the string 

     
2

2

2
0

1

t







v
.     (2.3) 

Here, 
2

2

z


  is the one-dimensional Laplacian operator; 0v  is the wave speed 

in the string defined by the following expressions 

    
M

lTS0v ,  S
l

l
ETS


 ,    (2.4) 

where TS is the tension, l is the length, M is the mass, E is Young modulus, l is 

the lengthening, and S is the area of the cross-section of the string. 

Let us agree to call the “real” component of the complex displacement 

),(),(Re tzxtz   the potential displacement and the “imaginary” component 

),(),(Im tzytz  , the kinetic displacement. 

The conjugated displacements make it possible to more completely describe 

the wave field of the string, as the potential-kinetic wave field. An introduction 

of these notions entirely complies with the demands of the laws of dialectics, 

i.e., with the philosophical and logical system treating the Universe as a symmet-

rical system of oppositions. 

We will seek an elementary solution of the wave equation in the form of the 

product of the string’s space displacements, represented by the function )(kz , 

and the space of time of wave events, expressed by the function )(ˆ tT  : 

     )(ˆ)(),( tTkztz  ,    (2.5) 

where 


 2

0


v

k  is the wave number,  is the circular frequency of oscilla-

tions, and the sign ^ over the symbol of the time function )(ˆ tT   does not allow 

confusion with the period T. 

The function (2.5) is the mathematical expression of the indissoluble bond 

of material and time spaces, or (rather) the fields of material space and physical 

time, which are the major oppositions in the Universe. 

The function )(ˆ tT   expresses the alternating physical time field by means 

of the argument t, which represents the ideal mathematical time of the imaginary 

absolute uniform motion, which is nonexistent in nature. Timers of different 
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types realize this imaginary time with an approximation. Such a preliminary ex-

planation of T̂ -function, as an image of the alternating physical field of time, is 

quite abstract; therefore, further, this notion will be supplemented with concrete 

content. 

The existence of two spaces-fields (2.5) allows representation of the wave 

equation of the superstructure (2.3) through equations of the space and time of 

the superstructure: 

     02   k ,     (2.6) 

     T
t

T ˆ
ˆ

2

2

2





.     (2.6a) 

These equations define two elementary plane-polarized transversal waves, 

travelling towards each other: 
 

))sin()(cos( 00
)()( 00 


 kztikztAAeeAe

kztitikzi
 ,

))sin()(cos( 00
)()( 00 


 kztikztAAeeAe

kztitikzi
 .

               (2.7), (2.7a) 

Upper indexes of -functions indicate the direction of waves motion: the 

sign “+” designates motion in the positive direction and the sign “-“, in the nega-

tive direction along the Z-axis with the speed v0; A is the amplitude of waves, 

which, generally speaking, can take any complex value. In a particular case, un-

der the name the amplitude, we will mean any real number. 

Traveling waves   and   define the potential and kinetic displace-

ments in the following forms: 

)cos(Re 0   kztAx  , )sin(Im 0   kztAy  . (2.8) 

)cos(Re 0   kztAx  , )sin(Im 0   kztAy  .  (2.9) 

The addition of the two traveling waves results in the standing wave: 

    
tiekza  )cos( 0   .   (2.10) 

It defines the potential and kinetic displacements: 

   tkzaxxx  cos)cos(Re 0   ,   (2.10a) 

   tkzayyy  sin)cos(Im 0   ,   (2.10b) 

where Aa 2  is the amplitude of the standing wave. 

The boundary condition for the string, fixed on the ends, is 

   0)cos()cos(),(Re 000   lzz
kzakzatkz  . (2.11) 

This condition is realized if 

   2/0    and 
l

n
k
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0v
, or 
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   0
02

v
v

l

n




  , or  

2

n
l ,   (2.12) 

where ,...3,2,1n  is the number of half-waves and 
2

n
  is the number of 

waves placed on the string. 

The condition 1n  defines the parameters of the fundamental tone of the 

string: 

 
l

k

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
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1
1
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v
, 0
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2
v
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


     and 1

2

1
l .  (2.13) 

Under the realization of the conditions presented above, -function de-

scribes the following elementary traveling waves of the space-time: 

 ))cos()sin((
)( 2 kztikztAAe

kzti


 


 ,   (2.14) 

 ))cos()(sin(
)( 2 kztikztAAe

kzti


 


 ,   (2.14a) 

with the potential and kinetic displacements 

 )sin(Re kztAx    , )cos(Im kztAy    ,   (2.15) 

 )sin(Re kztAx    , )cos(Im kztAy    .  (2.15a) 

Following the solutions obtained, the potential and kinetic displacements of 

traveling (in space and time) waves have the phase lag by a quarter of the period, 

90
o
. Let us agree on the graphs of the potential and kinetic displacements to pre-

sent with the two mutually perpendicular axes, x  ( x ) and 
y  (

y )  (Fig. 

3.2). 

 

Fig. 3.2.  Traveling (in space and time) potential-kinetic waves   and   at 

the instant 0t ; white circles define points of extremes of the kinet-

ic displacements and dark circles  points of extremes of the potential 

displacements. 
 

The traveling waves form the standing wave (Fig. 3.3): 

    iyxkzea ti   sin .   (2.16) 

In the Eq. (2.16), 

  tkzax cossinRe   , tkzay sinsinIm   , (2.16a) 

or, briefly, 

  tax z cosRe   ,  tay z sinIm   ,  (2.16b) 
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where kzaaz sin  is the amplitude of oscillations of the standing wave in the 

point z. It defines the points of the string, in which potential displacements are 

maximal. We call such points the potential points of the wave field of the string. 
 

 
Fig. 3.3.  (a) A graph of the potential-kinetic standing -wave of the field of 

the string at the instant 0t  (signs “+” and “-“ show the domains of 

opposite phases of oscillations, kzaaz sin  which are ampli-

tudes of oscillations of opposite phases in a cross-section Q); (b) a 

graph of the potential-kinetic wave (in space and time) with the po-

tential and kinetic displacements, x and y, at the instant nt  , 

where n is an integer (displacements x and y, in space, coincide in 

phase and are shifted, in time, by a quarter of the period, 90
o)

; (c) a 

graph of the potential-kinetic oscillations in time in the standing 

wave, in an arbitrary point z, satisfying the condition nkz  . 
 

On Z-axis, points of the string are characterized by maximal kinetic dis-

placements; therefore, we call Z-axis the axis of kinetic points of the wave field 

of the string. 

On the basis of (2.16a), we find the kinetic speed equal to the first deriva-

tive of the potential displacement with respect to time: 

   ytkza
dtdt

dx
k   sinsin

Re
v ,   (2.17) 

which is proportional to the kinetic displacement y. 

By analogy to the definition of the kinetic speed, we call the derivative of 

the kinetic displacement with respect to time the potential speed: 

    xtkza
dt

d

dt

dy
p   cossin

Im
v ,   (2.17a) 

which is proportional to the potential displacement x. 

Kinetic and potential speeds form the kinetic-potential complex speed 

   xiyi
dt

d
pk   vvv


,    (2.18) 

which defines the kinetic-potential momentum of the material object: 

   ximymimm
dt

d
mmp pk   vvv


,  (2.19) 

where 

    ymmp kk  v ,     (2.19a) 
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    xmmp pp  v       (2.19b) 

are the kinetic and potential momenta, correspondingly. 

As we see, the kinetic displacement defines the kinetic momentum. In turn, 

the potential displacement defines the potential momentum. The kinetic dis-

placement and speed, y and vk, correspond to the conventional classical notions 

of the displacement and speed.  

Let us clarify the meaning of the potential displacement and speed. 

Any atom of the string, as a physical point of its space of the mass mA (Fig. 

3.1), in the wave field of the standing wave is characterized by the additional 

kinetic k  and potential p energies, which are determined over the, correspond-

ingly, kinetic and potential parameters: 
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,   (2.20) 

  tkz
mx

m

pm
mA

A

ppA

p 


 22
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vv

,  (2.20a) 

where 2 Am  is the elasticity coefficient and am v  is the limiting speed 

of oscillations. These expressions represent the standing waves of energy. The 

symmetric representation of energies points out the definite symmetry of rest-

motion. 

The definition of the potential energy (2.20a) is the classical definition; it 

has arithmetic character. Whilst, strictly speaking, it should be determined on the 

basis of the potential speed with the measure piv . In such a case, the potential 

energy will be a negative value 

 tkz
m

m

pxim
mA

A

ppA

p 


 22
2222

cossin
2222

)(
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vv
.   (2.20b) 

It is an algebraic definition of energy: kinetic and potential energies must 

have different signs, because these express the opposite states of the field – mo-

tion and rest. This is why, as soon as we turn to motion in a central field, we 

must operate with the negative potential energy. 

The sum of potential and kinetic energies will be the variable value: 

   tkz
m mA

pk  2cossin
2

2
2v

 .    (2.21) 

The total energy, in the wave field of a standing wave of the string, per-

forms harmonic oscillations with double frequency. It confirms the fact that rest 

and motion are shifted with respect to each other, by phase, to a quarter of the 

period. On the other hand, the difference of the kinetic and potential energies is 

the constant quantity equal the amplitude of oscillations of the energies: 
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   kz
m mA

pkm
2

2

sin
2

v
  .     (2.22) 

Every atom is also characterized by the kinetic and potential actions, de-

fined by measures 

    ypkk   and xppp  ,    (2.23) 

and by the amplitude action 

     zzA am v ,      (2.23a) 

where 

   kzaaz sin , kzaazz sin v .   (2.23b) 

The difference of symmetrical energies defines the amplitude of oscillations 

of energy of an atom in a cross-section Q of the string with the coordinate z: 

   
222

sin
222 
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pkm

akza
.   (2.24) 

The potential speed and energy are maximal, in value, in potential points, 

while the kinetic ones are maximal on the Z-axis.  

As the potential displacement increases in value, the potential momentum 

and potential energy increase; the kinetic displacement, kinetic momentum, and 

kinetic energy decrease. 

The potential displacement and speed are measures of the potential wave 

field of the string. And the kinetic displacement and speed are measures of the 

kinetic wave field of the string. The complex displacement, speed, and momen-

tum are potential-kinetic parameters, accurately describing the potential-

kinetic wave field of the string. 

It is possible to say that the kinetic speed is the measure of the intensity of 

motion, i.e., the kinetic field, and the potential speed is the measure of the in-

tensity of rest, i.e., the potential field. 

Potential and kinetic speeds and, corresponding to them, momenta, like po-

tential and kinetic displacements, are also shifted in phase with respect to each 

other by 90
o
. This phase lag explains the unbalanced state of kinetic and poten-

tial fields as well as their mutual transformation one into another, which, under 

the ideal conditions of absence of energy loss, lasts eternally. 

On the basis of the conjugated kinetic and potential parameters, the formu-

lae of energies obtain a symmetrical form, reflecting the fundamental feature of 

all physical fields, as potential-kinetic fields (for the complete description of 

which the conjugated parameters are necessary). 

We perceive some parameters of kinetic and potential fields visually, other 

ones – physically. For example, a potential displacement is perceived visually, 

whereas a potential momentum and a potential speed are perceived physically 

only over the influence upon an object of a compressed elastic system. 

The potential-kinetic exchange of motion-rest in the wave kinetic-potential 

field is described by the potential-kinetic rate of exchange of the motion-rest 
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state, or briefly, by the kinema (“force”) F, i.e., by the rate of change of poten-

tial-kinetic momentum. The rate of exchange of momentum is 

)(
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,  (2.25) 

where 
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   (2.25a) 

is the potential kinema, or the potential power, in a wide sense of this word (we 

will consider these notions in detail further, in Chapter 4), or the “potential 

force” of the exchange of motion, and 
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v

   (2.25b) 

is the kinetic kinema, or the kinetic power of exchange of rest, or the “kinetic 

force”. 

An integral action of the potential kinema (2.25a) defines the potential en-

ergy 
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and an integral action of the kinetic kinema (2.25b) defines the kinetic energy 
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 .   (2.27) 

Thus, the kinetic and potential energies have different signs that is in con-

formity with the above-accepted definitions. In some cases, when it does not 

matter, we will omit the minus sign of the potential energy. 

It should be noted that the sign of any quantity, including kinetic and po-

tential energies, depends on the choice of a zero-point (e.g., a zero level of en-

ergy) and the direction of reading. This concerns all physical quantities. 

Accordingly, none absolutism of signs can be: it is only important that the op-

posite measures will have the different signs and nothing more. 

For example, we describe the wave field of the string by -function. How-

ever, i-function (i.e., -function multiplied by the “imaginary” unit) also is the 

solution of the wave equation. But now, the kinetic speed will be the “imagi-

nary” quantity and the potential speed – the “real” one. As a result, the kinetic 

energy will be the negative quantity and the potential energy will be the positive 

one. And this is rightfully. 

When the points of the string pass through kinetic points, the “elastic 

force”, i.e., the potential kinema, vanishes; while the “motion force”, i.e., the 

kinetic kinema, reaches maximal value and it is perceived, visually, as the inertia 

of motion. 



Chapter 3 138  

We see, thus, that the kinema, as the physical parameter of exchange of 

momentum, is the broader notion than the “force” related, in a definite degree, to 

physiological physics. This is why, the integrals, (2.26) and (2.27), were called 

the integral actions of kinemas, but not the integrals of “work”. 

As follows from the formulae of definition of kinemas, the extremal rate of 

change of kinetic momentum, i.e., the potential kinema of exchange of motion 

Fp, takes place in potential points of the field of the string. Analogously, the 

extremal rate of change of potential momentum, i.e., the kinetic kinema of ex-

change of rest Fk, takes place on the line of kinetic points. 

The above-considered potential and kinetic energies are measures of the 

transversal potential and kinetic wave field of the string, which relates to the 

superstructure of the field of the string (to the oscillatory level). These are 

transversal energies in the plane-polarized wave. 

Now, we will supplement the transversal energies with the conjugated lon-

gitudinal energies of the basis of the wave field. The basis is related with the 

dynamics of transmission of the wave signal.  

Generally, it is necessary for all the parameters of the superstructure of 

the wave to be supplemented with the conjugated parameters of the basis of the 

wave. A general structure of the potential-kinetic wave can be expressed by the 

graph shown in Fig. 3.4). 
 

 
 

Fig. 3.4.  A graph of the potential-kinetic wave, representing its generalized 

model. 

 

The potential energy of the field of basis of the string Wp has the form 

    
   

l

lESl
Wp

22

22





.    (2.28) 

Taking into consideration Eq. (2.4) and assuming SlM  , after elemen-

tary transformations, we find the longitudinal potential energy per one atom of 

the string p: 
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where 
l

l
T


  is the relative lengthening of the string. As a result we have 

    
22

2
0

2
0 pATA

p

mm vv



 ,     (2.29) 

where Tp 00 vv   is the potential speed. 

 Since every atom takes part also in the transmission of the wave signal 

along the string, hence, it has the longitudinal kinetic energy of the basis of the 

wave, which is defined by the speed of the wave field: 

     
2

2
0vA

k

m
 .      (2.30) 

It makes sense also to speak about the wave action of an atom during the 

transmission of a signal along the whole length of the string, which is defined by 

the equality: lmh A 0v . It is the action at the level of the wave basis. Taking 

into account that 
2

n
l  , we obtain 

     h
n

lmh A
2

0  v ,     (2.31) 

where 

      0vAmh       (2.31a) 

is the wave action. If 1n , we have 

     10
2

1
hlmh A  v ,     (2.32) 

where 

     101 vAmh       (2.32a) 

is the wave action of the fundamental tone. From these equalities, it follows that 

      
n

h
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n

1  ,    (2.33) 

where  
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h
 .    (2.33a) 

On the basis of formulae (2.33) and (2.33a), the kinetic energy of any atom 

of the string, at the level of the wave basis of the field, can be presented in the 

following forms: 
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where 
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It is usual to call the measure (2.34) the energy quantum. The definite wave 

portions of any measures of potential-kinetic fields relate to quanta. In general, 

all quanta are effects of the wave nature of matter-space-time. Hence, strictly 

speaking, they should be called wave quanta, or quanta-periods. Such funda-

mental quanta of wave spaces, as quanta of the spatial extension of waves (rep-

resented by the wavelengths , the quanta of time length, the named periods of 

physical time waves T, etc.), relate to the wave quanta. Unfortunately, M. Born 

did not understand this and introduced the term “quantum mechanics”, which 

began to press the wave theory of matter. It was a serious logical error. 

The measure of energy (2.34) repeats the well-known Planck’s energy for 

“quanta of energy – photons”, which (as will be shown in the following chap-

ters) do not exist in nature, being, at the most, mathematical fictions. 

On the basis of all above stated, we can present the wave number squared, 
2k , in the following form 

     
22

0

2
2 2






kAm

k 
v

.    (2.35) 

Then, the amplitude equation for the wave motion of the string (2.6) takes 

the form of Schrödinger's equation  

     0
2

2
 





kAm

 .    (2.36) 

Because the quanta of mass at the atomic level, as W. Prout noted, are masses of 

H-atoms (neutrons, protons), hence, the equation. (2.36) can be presented as 

     0
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
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km
 ,    (2.36a) 

where m0 is the atomic mass unit, substituted in the above presented parameters 

for the mass of an atom of the string mA. 

Since the total potential-kinetic energy of basis in the wave field of the 

string, for every H-atom, is equal to Tpk

mm


22

2
00

2
00 vv
 , we can 

again rewrite the equation (2.36a) as 

     0
)(2
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
 






pm
 .   (2.36b) 

In this form, the wave equation (2.36b) looks spectacularly. But actually, 

this equation is senseless. Here, 
2

0 )(2







pm 
 is the quantity, representing by 

itself a discrete series of values, which depend on the boundary conditions. 

Therefore, one should operate by the wave equation of superstructure in the form 

     02   k . 
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We can also present the wave equation of the harmonic -function (1.34) in 

the complex form:  
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Then, multiplying the equality (1.34) by the wave action  , we have 
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If we introduce the operator of the string 

     
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2
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H  
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v

,    (2.37) 

then the equation of the string will have the form 

     
t

iH






 ˆ .     (2.38) 

According to the fully developed opinion, in quantum mechanics, Schrö-

dinger's wave equation in the form (2.38) is regarded as a particular equation, 

since it contains the first derivative of the wave function with respect to time and 

the imaginary unit. And because of this, its solution can be presented only by the 

complex wave -function. Of course, it is a fallacy. As has been shown above, 

the wave equation with the second derivative of the wave function with respect 

to time can be also presented with the first derivative of the same function with 

respect to time. 

Previously, we devoted major attention, first of all, to the spatial )(kz -

function. Now, the time comes when we must turn to the detail analysis of the 

function )(ˆ tT   of the time field-space of the string. 

The material field-space )(kz  is characterized by the wave number of the 

space, k, connected with the wave quantum of the space  (the space wave-

length) through the following ratio 

      
k




2
 .     (2.39) 

In the time field-space )(ˆ tT  , the wave number is the circular frequency , 

which should be called the wave number of the time field-space. The time wave 

number  is inseparable to the wave quantum of the time field  the period T. 

The period of the time wave is the time wavelength T, which is analogous to the 

space wavelength . Between the time wavelength T and the time wave number 

 takes place the ratio, analogous to (2.39): 

      


2
T .     (2.40) 

T̂ -Function, in the explicit form, is presented as 
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    titeT ti  sincosˆ  . 

In conformity with the potential and kinetic displacements 

   tkzax cossin  and tkzay sinsin ,  

we will call the real part of the time T̂ -function, T̂Re , the potential time dis-

placement pt , or simply, the potential time with the relative unit amplitude; the 

imaginary part, T̂Im ,  the kinetic time displacement kt , or simply, the kinetic 

time. In such a case, we have 

   tititteT kp
ti  sincosˆ  ,    (2.41) 

where 

  ttTt p  cos)(ˆRe  ,  ttTtk  sin)(ˆIm  .  (2.41a) 

Thus, the physical time field is the potential-kinetic time wave; its graph is 

presented in Fig. 3.5. 

 
 

Fig. 3.5.  A graph of the time potential-kinetic wave: tt p cos  is the poten-

tial component and ttk sin  is the kinetic component of the wave 

of time. 

 

The physical time wave field of the string is a particular case of the compli-

cated ideal time wave field-space of the Universe with its infinite series of lev-

els. 

The following relation connects the spatial standing wave  (see Eq. (2.16) 

and Fig. 3.3) with the time wave: 

    TaTkza z
ˆˆsin  ;     (2.42) 

Therefore, they are structurally similar. 

The rate of change of time wave is determined by the potential-kinetic time 

speed : 

  titiTi
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ˆ
 ,   (2.43) 

where 
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k
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k  sin     (2.43a) 
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is the kinetic rate of change of time and 

    tt
dt

dt
p

k
p  cos     (2.43b) 

is the potential rate of change of time. 

Amplitude of the time speed is equal to the time wave number, referred to 

as the circular frequency (or, under the circular motion, the angular speed).  

The following relation takes place between the spatial and time speeds of a 

standing wave: 

     za
dt

Td
kza

dt

d ˆ
sin


v .    (2.44) 

At that, 

    kzk a v , pzp iai v .    (2.45) 

According to the equations (2.29) and (2.30), the standing wave of ampli-

tude energy of superstructure, at the level of H-masses, has the form 
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pkm
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The wave field of a string can be described also in the space of motion and 

time. As the measure of the space of motion, it is possible to take the wave field-

space of speed )(kzv . If the time field-space is represented by the aforemen-

tioned function )(ˆ tT  , then new v-function takes the form 

    )(ˆ)(),( tTkztz  v .     (2.47) 

This function satisfies the wave equation of a string for the wave field-space of 

speed and time: 
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Elementary solutions of the wave equation (2.48) define two traveling 

waves of speed, 
v  and 

v , correspondingly, in positive and negative direc-

tions along the Z-axis. 

Taking into account the boundary conditions, 
v -function takes the form 

  
  pk
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iAeAeii vvv
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where 

    )cos( kztAk  v ,     (2.49a) 

    )sin( kztAp  v      (2.49b) 

are the traveling waves of the kinetic and potential speeds, correspondingly. 

The traveling wave of 
v -speed, conjugated to 

v , is 

  
  pk

kztikzti

v iAeAeii vv)()( 2 




 ,  (2.50) 



Chapter 3 144  

where 

  )cos( kztAk  v ,  )sin( kztAp  v .  (2.50a) 

On the basis of the equation (2.49), we obtain the expressions for the kinet-

ic, potential, and amplitude energies of traveling 
v -waves: 
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where Am v  is the amplitude value of speed. 

Potential and kinetic energies in traveling waves are shifted in phase by 90
o
 

(Fig. 3.6a). 
 

 
 

Fig. 3.6.  A graph of the traveling (a) and standing (b) potential-kinetic waves 

of energy; Q is the plane of cross-section of the standing wave, where 

potential-kinetic oscillations of the wave of time (c), shifted by 90
o
, 

occur. 

 

Analogous wave energies defines 
v -function: 
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Obviously, the sum of the traveling kinetic-potential waves, 
v  and 

v , 

generates the standing wave of speed 

    pk
ti ikzeai vvv   sin ,    (2.57) 

where   

   tatkza zkkk  sinsinsin   vvv   (2.57a) 
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and 

   tatkza zppp  coscossin   vvv .   (2.57b) 

Thus, the expressions for energies in the standing wave take the following form: 
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where am v  is the amplitude value of speed. 

The structure of standing waves of potential-kinetic energy is shown in Fig. 

3.6b,c. These waves of energy were earlier presented by the formulae (2.20) and 

(2.20a). 

If in a string, the two mutually perpendicular plane-polarized waves, travel-

ing in opposite directions, are excited then the circular-polarized wave arises. 

The energy of every particle in this wave has now the constant value, independ-

ent of time: 
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2

sin

2

)( 222
kzmim

mApA

p

vv
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From this we find the amplitude energy 

   kzmm mAzzApkm
222 sinvv    .   (2.61) 

At that the total energy is equal to zero: 

    0 pk  .      (2.62) 

Thus, every atom of a string, in such a wave, performs the circular mo-

tion with the total energy equal to zero. At that, the kinetic speed is directed 

tangentially to the circular trajectory, whereas the potential speed, perpendicu-

lar to the kinetic one, is directed to the Z-axis. In this wave, the kinetic and 

potential fields are mutually perpendicular (Fig. 3.7) and negate each other. 

Thus, it is clear why in nature the circular motion prevails.  
 

 
 

Fig. 3.7.  A circular potential-kinetic wave of the string. 
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Obviously, the description of the wave field can be realized also by the 

complex -function, which represents other physical parameters, such as the 

potential-kinetic momentum, potential-kinetic kinema, etc. It means that the 

wave -function of string can describe any potential-kinetic fields of the string: 

fields of displacements, speeds-time, momenta-time, etc. All these wave fields 

represent by themselves the different measures of a many-sided potential-kinetic 

field of a string. 

In virtue of the above stated, in dialectics, the question about the interpreta-

tion of the wave -function makes no logical sense, because everything depends 

on which facets of the potential-kinetic field we mean to regard. If we would 

write the equation of a wave process, or a wave system, only formally and, fur-

ther, be engaged in scientific guessing (“interpretation”), then we could come to 

the creation of myths. And myths, as is well known, take deep roots in the mass 

scientific consciousness, making it blind. 

In this connection, let us once more turn to the generalized equation of the 

string (2.36), introducing in it some potential energy of interaction of atoms 

)(z  (that, unconditionally, is inadmissible; we have written about it already). 

Then, designating the total energy of oscillations of an atom of the string in a 

cross-section S by the letter W, we can write: 

     )(zWk   .     (2.63) 

On the basis of such a “generalization”, the wave number 
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and, corresponding to it, frequency of the wave field of the string 
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v      (2.65) 

will be the functions of the coordinate z of points of the string, )(zkk   and 

)(z  . Actually, the wave number k is the constant quantity, defining some 

frequency of the wave field , which bonds the wave system in a single whole. 

According to such a “generalization”, all points of the string must oscillate 

with different frequencies. This is an absurdity, possible only due to a free game 

of notions, unrestricted within the reasonable framework of logic. 

This cardinal error has transformed quantum mechanics into a great carica-

ture about the world of real wave processes. And the extensive publicity created 

an illusion as if mankind deals with a great theory. In fact, a phenomenological 

theory, with the definite fitting of it to the experiment, was built as a result. This 

theory (quantum mechanics) as much significantly distorted the real picture of 

the microworld that it became the world of theoretical monsters and quantum 

chaos, but not the world of real images. 



An Analysis of the Basic Concepts of Quantum Mechanics and New (Dialectical) Solutions 

 

147 

The absurdity of the above-described formal “deducing” of the relation 

(2.64) (for the field of the string) is clear and no sane physicist will agree with 

the “generalized” wave equation of the string in the form as follows: 

      0)(
2

2
0

  zW
m


 .    (2.66) 

The falsity of such a formal generalization-derivation is obvious. But in the 

1930’s, the similar work for the hydrogen atom was (and still) declared as a 

greatest penetration in the mystery of the atomic world. Many physicists have 

objected to such a theory, but they had (and yet have) no apparatus to be able to 

“see” atoms; therefore, it was very difficult to object to the aggressive physical-

mathematical decadence. And the decadence overcame reason. Since then, all 

right notices against such a formalistic arbitrariness were/are declared as the 

“classical backwardness”. 

 

 

3.  Parameters of the wave field of a string and Balmer’s 

formula 
 

The wave motion of a string with the frequency of the fundamental tone 1  

and wavelength 1  generates an acoustic wave in the surrounding air of the 

same frequency: 
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where c  is the acoustic wavelength, c is the speed of sound. From the equations 

(2.13) and (3.1), the following relation for the fundamental tone takes place: 
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Let us imagine that the ends of the string are joined together, i.e., we deal 

with a string circle with one node. If the radius of the string circle is equal to 1r  

then the equation (3.2) will take the form 
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where 
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v
       (3.4) 

is the frequency of the fundamental tone of the string. 

If we have a series of string circles of the length ln, whose radii rn are multi-

ple to the radius of the first circle r1, 1nrrn  , and the wave speeds are inversely  
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proportional to numbers of this series, nn /1vv  , then such strings will have the 

following proper frequencies: 
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v
 .     (3.5) 

These frequencies will define the spectrum of acoustic waves of the fundamental 

tone 
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The difference of the two inverse acoustic wavelengths (two arbitrary string 

levels of (3.6)) is presented by the following equality: 
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where 
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is the wave constant of the string of the fundamental tone. 

Let us remember now Balmer’s wave formula for H-atom spectrum 
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where v0 and r0 are the Bohr speed and radius, correspondingly. Obviously, for 

the limiting wave of radiation, of the fundamental tone of H-atom ( n  and 

1m ), the following relation, analogous to the relation for the string (3.8), takes 

place: 
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where 
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is the frequency of the fundamental tone of the first electron orbit. 

Conformity of the parameters, for the electron orbit and string circle, is ob-

vious. And it is natural, because an electron on its orbit is the node of the elec-

tron circular cylindrical wave. A physical mystery of Rydberg constant is 

revealed here. The relation (3.10) has the fundamental wave character. It points 

out the existence of a series of Rydberg constants for many wave systems. In a 

particular case of a string, the Rydberg acoustic constant is 

     
l

c
R

2

/0v
 .      (3.12) 



An Analysis of the Basic Concepts of Quantum Mechanics and New (Dialectical) Solutions 

 

149 

Thus, the formula of the Rydberg constant uniquely rejects the quantum 

mechanical myth that electrons in atoms have no orbits (trajectories) and their 

probabilistic chaotic motion forms so-called “orbitals” (“charged clouds” of 

probability of electron’s localization). All this is formalistic fantasy, yet we will 

analyze it in detail in the following chapters. 

Earth’s orbit is analogous to the electron orbit of the fundamental tone. 

Therefore, the formula (3.10) is also valid for the wave gravitational field of the 

solar system. Since the period of Earth’s rotation is equal to one-half period of 

the fundamental tone of Earth’s orbit (with its only gravitational node-Earth), 

therefore, it should be assumed the existence in our Galaxy of waves in two light 

years and half-waves in one light year. And actually, a half-wave of Earth’s orbit 

shows its worth in the distances between stars. 

The sand grains in Chladni’s famous experiments * with oscillating plates 

are localized not in points of maxima of -function, but only in points of its zero 

values, i.e., in the nodal points of the field. Just so, we should assume that stars, 

in the galactic wave field, are situated in nodes of cosmic space. The astronomi-

cal data confirms this supposition. Bessel, who has measured the parallax of 

stars, carried out (in 1838) the first reliable determination of the distance to the 

star 61, Swan. It proven to be 11 light years (the calculated value, according to 

the parallax in 629.0  , is 11.0247). Bernard’s star has the parallax in 354.0   

that corresponds to the distance in 6 light years (calculations give 6.0016). The 

star Procaine: the parallax is 729.0  , the distance - 11 light years (10.9921), etc. 

Thus, within accuracy of measurements of parallaxes, the distances to the above-

mentioned stars are multiple, precisely enough, to a half-wave of Earth’s orbit. 

A string, fixed from both ends, can be called (in a definite sense) the closed 

string. If one end of the string is fixed and another one is free (open), it will be 

then a half-open string. In such a string, an elementary standing wave also arises, 

    
tiekza  )cos( 0   .   (3.13) 

The boundary conditions for the fixed and free ends are  
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00 

z
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    dkzatkz lz  )cos(),(Re 0 ,   (3.15) 

From the condition (3.14), we find the initial phase, 2/0   . The second 

boundary condition (3.15) gives the possible values of the wave number and fre-

quency of the field of string: 
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* Waller M.D., Cladni Plates, London, Staples Press, 1960. 
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Let us assume that displacements of the free end of the string take the fol-

lowing series of values 
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where m and n are integers. This condition always can be realized. The discrete 

series of values of the wave number and circular frequency corresponds to the 

above condition: 
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As follows from (3.18), standing waves of the undertones must arise in the 

half-open string: 
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Oscillations of the open string excite acoustic waves in the air of the same fre-

quency 
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they form the acoustic spectrum of waves, analogous to the H-atom spectrum: 
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4. The mathematical basis of the hydrogen atom using the 

wave equation of matter-space-time 
 

Quantum mechanics, with its Schrödinger’s -function, has actually no re-

lation to the concrete presentation of the microworld. The philosophy of abstrac-

tionism lies in its base. Abstractionism exhibited itself first in art. As usual to 

regard, the first work of abstractionism was Candinsky’s picture of 1910 (in wa-

ter-color), painted in Munich. Ch. Bru, a French critic, has wrote, “For the first 

time in history of painting, it is impossible to find or recognize anything in this 

picture” *. Bru noted also that Candinsky’s abstractive idea arose when he, by 

chance, had leaned one of his pictures, looking at it under the angle: the image 

on this picture has became incomprehensible, as much enigmatically paints have 

sparkled at once. According to another version (by A.A. Sidorov): one day, 

Candinsky, drying the brushes, paid attention to the combination of accidental 

stains on a rag and thought, for a moment, why not regard this rag as the work of 

abstract art, without any objective content. 
                                                           
* Ch. Bru, Esthćtique de L’abstraction, Paris, 1959, p.3. 
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According to theorists of the abstract view on the world, abstract painting is 

painting “…when we can know nothing from it about the objective reality, being 

the normal sphere of our life… From this it follows that abstract painting is a 

reproduction brought to such an extreme, when it is impossible to find there an 

initial natural object; it is the reproduction, which, at first sight on it, nothing 

reminds us of the original. Only this work will have the right to be called the 

abstraction” *. 

The physical-mathematical abstractionists have acted in the same spirit. 

Their philosophy sweeps aside, without a trace, any possibility of the concrete 

presentation of the microworld, in full agreement with Mach’s and Ostwald’s 

(F.W. Ostwald, 1853-1932, German chemist) ideas. Ostwald has written, in 

1902, that the time, when all these “atoms and molecules will disappear in a dust 

of archives”, is not so far. Mach has called the electron theory as a “respectable 

witches' sabbath”. 

Therefore, it is no wonder that, in quantum mechanics, the extraordinary 

primitive abstract model, based on the formal mathematical group of waves, rep-

resents the correlation of waves and particles. The superposition of these waves 

forms an envelope, spreading in space with the speed, different from the speed 

of constituent waves. This envelope, called the wave packet, is regarded as a 

microparticle; and waves, related to the packet, as waves of probability. Thus, 

the foundation of nature is represented as probabilistic “vague” chaos. 

We will present now, in general outline, the abstract-concrete dialectical 

description of the microworld, which reflects their authors’ works **. 

The wave equation of matter-space-time  
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2v
 .     (4.1) 

lies at the base of the dialectical description of the world. -Function represents 

the mathematical image of the potential-kinetic field of space-time of the atomic 

level (the level of superstructure over the nearest subatomic level – the level of 

basis). The wave equation (4.1) falls, like Schrödinger’s equation, into the equa-

tion of spatial -function, 

     02   k ,     (4.2) 

and the equation of time T̂ -function, 

     T
dt

Td ˆ
ˆ

2

2

2

 .     (4.2a) 

T̂ -Function has the form 

     
tieT ˆ .      (4.2b) 

 

                                                           

* Dictionnaire de la abstraite, Paris, 1957, pp. 2-3. 

** L.G. Kreidik and G.P. Shpenkov, Alternative Picture of the World, V.2, Bydgoszcz, 1996. 



Chapter 3 152  

4.1. The spherical wave field of H-atom 
 

If a wave object and its wave field-space have the spherical structure, that 

is characteristic for all microparticles, then the elementary structure of the field 

of space-time of microobjects is expressed by the functions 

  )(ˆ)()()(ˆ),,( ,,, tT)(RtT mmllmlml    ,  (4.3) 

where 

   )()(),,( ,,  mmllml )(R      (4.3a) 

is the spatial ml , -function, kr  is the relative radius, k is the wave number 

of atomic space, and )(ˆ tT   is the time function. 

The structure of -functions (4.3) allows decomposing the spatial equation 

(4.2) into three equations: 
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where kr  is the radial argument and 


2
k  is the wave radial number of 

the atomic space. The azimuth function has the form 
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m e .     (4.4c) 

Here, 0  is the initial phase, which is defined on the basis of the azimuth struc-

ture of a microobject. 

The simplest polar-azimuth functions, within the constant factor, are pre-

sented in Table 3.1. The initial phase 0 , for simplicity, is omitted.  

Solutions of the wave equation (4.2) differ from the solutions of Schröding-

er’s equation because of their radial components, which are different, in princi-

ple. Elementary radial solutions of the atomic space do not diverge. They are 

presented by Bessel spherical functions, well known in the theory of wave fields. 

Only two wave numbers, l and m, characterize elementary functions of wave 

atomic space. 

In the simplest case of the spherical field, elementary radial solutions are 

described by the radial functions of half-integer order: 
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where 
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is the spherical “exponent”. 

 

Table 3.1. Polar-azimuth functions. 

 l  m )()(,  mml   
 

0 0 1 

1 0 cos 

 ±1 sin exp(±iφ) 
 

2 0 cos2 - 1/3 

 ±1 sin cos exp(±iφ) 

 ±2 sin2exp(±2iφ) 
 

3 0 cos (cos2 - 3/5) 

 ±1 sin (cos2 - 1/5) exp(±iφ) 

 ±2 sin2 cos exp(±2iφ) 

 ±3 sin3 exp(±3iφ) 
 

4 0 cos4 - 6/7 cos2 + 3/35 

 ±1 sin cos (cos2 - 3/7) exp(±iφ) 

 ±2 sin2 (cos2 - 1/7) exp(±2iφ) 

 ±3 sin3cos exp(±3iφ) 

 ±4 sin4 exp(±4iφ) 
 

5 0 cos (cos4 - 10/9 cos2 + 5/21) 

 ±1 sin (cos4 - 2/3 cos2 + 1/21) exp(±iφ) 

 ±2 sin2 cos (cos2 - 1/3) exp(±2iφ) 

 ±3 sin3 (cos2 - 1/9) exp(±3iφ) 

 ±4 sin4 cos exp(±4iφ) 

 ±5 sin5 exp(±5iφ) 
 

 

 

Considering the solutions of the spherical field (4.5), one should keep in 

mind that the argument  can take values within the interval from 01 kr  to 

 . The radial parameter 0r  is the radius of the sphere-shell, separating 

the proper space of H-atom (with its “atmosphere”) from the surrounding 

field-space of matter. Thus, H-atom is regarded as the atom of the field of mat-

ter-space-time. Its shell of the radius 0r  is the boundary shell of the wave 

atomic space, from below, while the upper boundary shell is boundless. 

At 0l , we obtain a simplest solution 
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where 
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is the potential displacement and 
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is the kinetic displacement. The condition 
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defines the radii of potential spheres (shells), situated from each other at the dis-

tance of a radial half-wave,  

    nkr   or 
2

rnr


 ,    (4.8) 

and the radii of potential spheres, multiple to one wave, 

    nkr 2  or rnr  .    (4.8a) 

On the boundary shell, the condition (4.8) takes the form 

    
2

0
rr


  or 02rr  .    (4.8b) 

Hence, the radii of stationary shells turn out to be multiple to the radius of the 

boundary shell, 

     nrnr r
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A radial wave of the boundary shell defines the azimuth wave of the shell, 

     00 42 rr   .     (4.10) 

Thus, the elementary wave 0  is the wave of the fundamental tone. Similar to 

the case of the wave field of a string, only a half-wave of the fundamental tone is 

placed on the electron orbit, and the electron is in the node of the wave. 

The condition (4.9) defines the spherical wave field with the uniformly dis-

posed potential spheres.  

It should be noted, in this connection, that other solutions of the equation 

(4.5), unrelated to H-atom, with wave numbers 0l  (we will discuss it in other 

chapters), define the discrete nodal structure of the others atoms. From these so-

lutions it follows that the spherical space of the atoms is nonuniform. Roots of 

the Bessel functions determine radii of their stationary nodal spheres: 
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If we will denote the roots of the order 2
1 l  by sz , , where s is the 

number of the root, then we have 
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Under 1kr , the condition (4.11) is substituted for the approximate equality 
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and 
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For sl  , we have 
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Thus, for 0l , the spherical wave field-space approaches to the uniform one 

only at large distances. 

Let us return again to the solutions for H-atom ( 0l ). According to Eq. 

(4.6), -function of the spherical field of H-atom has the form 
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where the superscript “+” of the wave function shows that the traveling spherical 

wave moves in the positive direction, in which it spreads in all directions from 

H-atom. The corresponding convergent wave has the structure 
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The sum of waves, (4.16) and (4.16a), defines the standing wave, in space, 

with respect to time: 
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where Aa 2  is the amplitude of the standing wave. 

At the potential shells ( nkr  ), the kinetic and potential amplitudes are 

equal, correspondingly, to 

    
kr

ia
am  , 

kr

a
am  .     (4.18) 

Within the signs of directions of displacements, ±, and the imaginary unit i 

(the indicator of belonging of displacements to the kinetic field), the values 

(modules) of potential and kinetic amplitudes are equal to the same numerical 

measure 
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Sometimes, when only these will interest us, we will operate only with modules 

of amplitudes. For the intratomic field, 0/k  and the amplitude of dis-

placement in the spherical field of -function has the form 
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a
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 .      (4.19) 

The amplitude of displacement defines the amplitude kinetic and potential 

speeds 
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The sign ““ indicates the direction of motion at the instant, when the phase 

of the wave is equal to zero, 0 krt ; therefore, it does not matter and can be 

omitted for the sake of simplicity. 

 In the spherical wave field, the amplitude elementary momentum of a par-

ticle of mass m is 
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From this we find the elementary wave action 

    amrmrp mm 0vv  .     (4.22) 

If 0ra   and 0  is the speed on the first Bohr orbit, then this action is 

Planck’s action. The radial action (4.22) defines the azimuth action 

   amrmrph mm 02222 vv    .   (4.22a) 

As we see, the elementary actions in the spherical field are the constant 

parameters of the field. 

According to the equations (4.10) and (4.22a), the wave action of the wave 

of the fundamental tone h  will be presented as 

    amh 044 v   .     (4.23) 

Obviously, azimuth and wave actions of the wave of fundamental tone are 

related as 
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The elementary momentum (4.21) allows determining the potential energy 

of an arbitrary particle of this field with the mass m: 
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According to the condition (4.8), energies of particles on the potential 

spheres are 
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where Aa 2  is the amplitude in the standing wave. The factor 2, in the denom-

inator, shows that under other equal conditions the energy is half as much the 

energy of circular motion, the motion with two degrees of freedom resulted in 

the superposition of two mutually orthogonal potential-kinetic waves. 

In the traveling wave, a distance between two sequential potential shells, in 

a simplest case, is equal to the amplitude of oscillations a. On the other hand, 

this distance is equal to a half-wave, hence, 

     2/2 rAa  .     (4.25) 

In particular, on the boundary shell, we have 

     2/20 rAar  .    (4.25a) 

Taking into account the equation (4.25), the expression (4.24a) can be re-

written as 
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4.2. The cylindrical wave field of H-atom 
 

An electron, moving along the wave orbit, represents by itself the cylindri-

cal wave field. Therefore, its motion should be described by the wave equation 

(4.1) and for the cylindrical wave field-space.  

We will suppose that the plane of the orbiting electron is perpendicular to 

Z-axis, then -function can be presented as 

  )(ˆ)(ˆ)()(ˆ),,( tTzkZ)(RtTz zllll    .   (4.27) 

In the cylindrical field, the wave equation (4.2) falls into the following 

equations: 
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where zk  is the wave number of the wave, continuing along the Z-axis. 

Thus, the elementary space component can be presented by the following 

space-wave 
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Simplest solutions of the radial equation (4.28) are 
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As a result, the cylindrical wave function takes the form 
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where 0  is the initial phase of the azimuth wave. 

In the cylindrical field, the order of the radial function l defines the number 

of waves, which are placed on the orbit. In a simplest case, one electron, as the 

node of the wave, shows that only half-wave is placed on its orbit. So that such 

an orbit will be described by the function of the order 
2

1l . As a solution, we 

choose the following function 
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or 
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where 0  is the initial phase of the azimuth component of the radial divergent 

wave, defined on the basis of the boundary conditions. Naturally, the “radial di-

vergent wave” is not the full name of the wave, because it represents the wave 

structure of radial, azimuth, and axial waves-spaces. The axial wave, represented 

by the function (4.34), propagates along Z-axis in the positive direction. The 

convergent radial wave 


2
1  corresponds to the divergent one, 
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Both waves form the dynamic stationary wave field in the radial direction, 

expressed mathematically by the standing radial wave: 
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Simultaneously, the 
2

1 -wave is the traveling wave in the azimuth and ax-

ial directions, positive with respect to the Z-axis: 
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The corresponding wave, traveling in the negative direction, is 
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Both waves form the standing wave in the radial and axial directions: 
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However, in the azimuth direction, it is the traveling wave along the electron 

orbit. If we are uninterested in the description of the axial wave, we can omit the 

axial component and to consider only the radial-azimuth subspace: 
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Returning back to the traveling wave (4.34), let us write it as 
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A surface of the equal phase of the traveling wave is defined by the equal-

ity 
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If constr  , surfaces of the equal phase represent by themselves the spiral 

lines with the parameters: 
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where e  and Te  are the circular frequency and period of the electron‘s orbiting, 

  is the circular frequency of the azimuth wave of the fundamental tone and 

eTT 2  is its period. Thus, we have 

    vvkz kz   and TTz  ,   (4.42a) 

where z  and   are, correspondingly, the axial and azimuth wave speeds. If 

the azimuth speed is negative, the clockwise motion occurs and the axial speed 

is directed in the positive direction along Z-axis.   

At that, the wave radius z  defines the axial wavelength:  

     Tzzz v 2 .     (4.43) 

Such a wave should be called, strictly speaking, the azimuth axial wave because 

it is determined by the azimuth period. Because the azimuth axial wave (4.43) is 

related to two orbital turns, it is equal to the double wave screw pitch. 

Under constz  , surfaces of the constant phase (4.41) are spiral and the 

following equality is valid: 
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At the cosmic levels, these are represented by the spiral galaxies, and in the mi-

croworld, they express the same wave structure. 

When constr   and constz  , the constant phase of the spatial-time wave 

constzkkrt z  02
1  , at the circular orbit, is connected with the 

frequency of the fundamental tone by the equality: 02
1   ddt . From this 

we arrive at 
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       .      (4.45) 

During the one wave period of the fundamental tone, the electron twice runs 

the azimuth orbit, therefore, 


 4
2


l

 , where 2
1 ml  is the order of 

the function and m is the azimuth number. When the order of the wave function 

is equal to pml  , the constant phase of the azimuth wave, at constr   and 

constz  , is represented by the equality 

   constpzkkrt z  0 .    (4.46) 

Then, during the one wave period, the electron’s azimuth displacement will be 

of  

     p/2  .     (4.47) 

The amplitude of -function of displacement, in the cylindrical electron 

wave, obviously, takes the following form 
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In such a case, the amplitude speed of the wave will be equal to 
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Because the circular motion is the sum of two mutually perpendicular po-

tential-kinetic waves, hence, like the case the string (see Eq. (2.61)), the ampli-

tude energy of an orbiting electron is 
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As we see, the electron energy is proportional to the circular frequency, i.e., 

to the time wave number of the time field of the orbit, . We will rewrite its as 
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where e  is the electron wave of H-atom space, 
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are the orbital, radial and azimuth, electron actions. In the space of the stationary 

field of standing waves, we have the same (4.51) relations, however, here 
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On the other hand, the electron is in the spherical field of H-atom, where its ac-

tion is the constant value. Hence, at 0rr  , 0ra   (see Eq. (4.25a)) and we have  

     ame 0v .      (4.53) 
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The wave atomic space, with the wave frequency e/0v , induces out-

side the atomic space the external waves of matter-space-time of the same fre-

quency, but with the speed c and wavelength , so that 
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Therefore, the electron energy can be presented also as (see Eq. (4.23a)) 
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With that, the electron’s wave energy is equal its kinetic energy on the orbit: 
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where orb )2/1(  is the circular wave frequency of the fundamental tone and 

orb is the circular frequency of electron’s revolution along the orbit, for which 

υ=rorb.  

Consequently, the energies hE   and the above-considered actions h, 

has no relation to the mystic massless quanta of Einstein’s pure energy (which 

move in “vacuum” with light speed and have the wave features). These are the 

fundamental parameters of the electron orbit and electron itself and, hence, of 

the H-atom on the whole. 

How can a mystic photon have physical properties, if its expansion (size), at 

least in the direction of the propagation of the wave beam, is equal to zero (ac-

cording to the “great relativity theory”)? The mystic photon is an object being 

outside of real space. It is a fruit of a headlong fantasy of abstractionism and 

machism, the fig-leaf covering the mechanical model of the wave field (pro-

posed by Einstein) and nothing more. 

Now, we will turn to the -function of the electron. Let us assume that the 

electron orbit is in the plane 0z . Because the electron is the node of the wave 

orbit, hence, the boundary orbital conditions at the instant 0t  must express the 

equality to zero of potential azimuth displacements in the node during one revo-

lution:  
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These conditions are realized for the traveling electron wave in the positive 

direction if, e.g., 2/0   . In such a case, -function of the electron takes the  

form:    
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he function (4.57) describes the wave of the fundamental tone of the elec-

tron e . Its length, as was revealed earlier, is equal to the doubled length of the 

electron orbit of the Bohr radius r0: 

     04 re   .      (4.58) 

The wave motion of the fundamental tone occurs in the nearest layers of the 

wave atmosphere of the H-atom, almost at its surface (we will discuss it later). 

The equilibrium wave interchange of energy takes place between the H-

atom and the surrounding field of matter-space-time. However, under the pertur-

bations, the electron wave (4.58) can reiterate itself in the cosmic wave of the 

same frequency (see Eq. (4.54): 
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The inverse quantity of this wave is the Rydberg constant: 
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This formula has been obtained earlier at an analysis of oscillations of a 

string and we arrived at it again on the basis of the accurate wave calculation of 

the H-atom’s space. 

Let us turn now to the energetic calculation of electron transitions in the H-

atom. The electron realizes the transitions of the H-atom from the n-th into m-th 

energetic state; it is the wave motion with the energy of transition (4.55). The 

law of conservation of energy, at such an extremely fast “quantum” transition, 

can be presented by the equality: 
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Taking into account the potential energy of the electron in the spherical field of 

the H-atom (4.26), we obtain the following equation of the energetic balance: 
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Hence, we have   
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Thus, in the strict correspondence with the wave theory, without any hy-

potheses and formal fittings, we arrive at the spectral formula of H-atom (4.63) 

and the Rydberg constant 
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Note once more, in conclusion, the wave solutions for 0l  do not concern 

the H-atom. They describe the shell structure of the others atoms of Mendeleev’s 

periodic table (we will consider it in Chapter 6). 
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5.  Hydrogen atom by Schrödinger’s equation 
 

Let us remember some facts from history. E. Schrödinger published his 

“For Lectures on Wave Mechanics” in 1928. Three years later, H.E. White pre-

sented cross-sections of polar components of the -function *. Up to that time, 

scientific works in the decadence spirit were widespread. For example, the Pauli 

exclusion principle (a result of a free game of notions) was put forward in 1925. 

A whole series of theoretical constructions was carried out on the basis of the 

Rutherford-Thomson nuclear model, where the key role was attributed to elec-

trons, etc. In these circumstances, Schrödinger was, to a definite degree, a hos-

tage of the pressure of physical-mathematical decadence, which widely 

publicized quantum mechanics, as the highest achievement of human thought. 

In this connection, it is appropriate to quote some discourses of Joseph 

Clapper, a specialist on free information **. He has stated that there is the 

sphere, where the mass media is extremely effective with the opinions of new 

problems. Under “new problems”, he meant the problems about which neither an 

individual nor his friends (or members of the same group) have no opinion. The 

reason for the efficiency of the mass media, in the creation of views on new 

problems, is obvious. An individual is unable to protect oneself and, hence, in-

formation moves to unprotected ground. And, as soon as the opinion was 

formed, it becomes a new opinion, which can be strengthened easily, but 

changed in a very difficult way. Especially, such a process of formation of a 

definite view is the most efficient, when a man has no other sources of informa-

tion. Thus, he depends on the mass media, accessible for him, yet more. 

In 1933, Max Born wrote in his book on atomic physics *** (All presented 

here and further quotations were taken from Russian editions of references): 

“Primarily, Schrödinger undertook an attempt to regard the corpuscles, in par-

ticular electrons, as wave packets. Although Schrödinger’s formulae are quite 

correct, his interpretation could not hold out against the critique. Actually, on the 

one hand, the wave packets run throughout the course of time. However, on the 

other hand, the description of the interaction between two electrons, as the inter-

action of two wave packets in the ordinary three-dimensional space, encounters 

enormous difficulties. 

The current accepted interpretation was proposed by Born. From the points 

of this interpretation, the probabilistic laws define a whole course of events in a 

physical system. A probability, defined by de Broglie’s wave (associated with 

the state of a particle), corresponds to a location of a particle in space. Thus, the 

mechanical process is conjugated with the wave process, i.e., with the propaga-

                                                           
* H.E. White, Phys. Rev., 37, 1416, 1931. 

** Modern Communication and Foreign Policy, Washington, 1967, pp. 60-61. 

*** Max Born, Atomic Physics, Blackie and Son Limited, London-Glasgow, seventh edition, 

1963; Mir, Moscow, 1965. 
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tion of a probabilistic wave. This wave, submitted to Schrödinger’s equation, 

defines the probability of any variant of course of events in the mechanical 

frame of references. If for example, a wave of probability has the zero ampli-

tude, in a point of space, it means that the probability to find an electron in this 

point is disappearingly small” (page 117). 

urther, on pages 172-173, we find: “In conclusion, we should consider once 

again the sense of the wave function itself… It should be expected that in wave 

mechanics as well, the wave function  or rather its modulus squared, must gain 

in importance, because an instant value itself of the oscillating function, of 

course, cannot play a role because of the high frequency of oscillations. The rea-

son for taking the square of the modulus is that the wave function itself (be-

cause of the imaginary coefficient of the time derivative in the differential 

equation) is a complex quantity, while quantities susceptible of physical inter-

pretation must of course be real”. (Underlined by the authors) 

These judgements call up Newton’s and Euler’s views. L. Euler, in his 

“Algebra” (1770), has asserted: “Square roots of negative numbers are not equal 

to zero, are not less than zero, and are not greater than zero. From this it is clear 

that the square roots of negative numbers cannot be among the possible (actual, 

real) numbers. Hence, we have no another way except to acknowledge these 

numbers as impossible ones. This leads us to the notion of numbers, impossible 

in essence, which are usually called imaginary (fictitious) numbers, because they 

exist only in our imagination.” 

In connection to the statistical interpretation of the wave function, M. Born 

has continued (pages 174-175): “We speak often about the distribution of elec-

tron density in the atom or about the electron cloud around the nucleus. We 

mean by these words the charge distribution, which is obtained under the multi-

plication of the function of probability 
2

n  by the electron charge e. According 

to the statistical interpretation, the sense of this distribution is clear: in the pho-

tos of Fig. 16, it is shown how this distribution can depict. The image represents 

projections (shadows) of electron clouds in different states.”  

A.K. Timiryazev gave the critique estimation to quantum mechanical con-

cepts, which are based on positivism. His book * contains a critical analysis of 

the status quo in physics at that time (which has the actual meaning so far), con-

cerning the acceptation of the statistical approach to the description of the atom-

ic structure. Below are some passages from it. 

“Beginning from 1923, the Bohr theory experienced deep crisis. Great dif-

ficulties have appeared during attempts to extend the theory … for other at-

oms… Further, vast obstacles have arisen when it appeared necessary to 

calculate time, during the course of which the electron radiates energy, jumping 

from one orbit to another. 

                                                           
* A.K. Timiryazev, Introduction in Theoretical Physics, State Publishing House, GTTI, Moscow-

1933-Leningrad, pp. 334-336. 
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This crisis was “resolved” in 1925, when Heisenberg’s paper on the abstract 

mathematical theory of quanta appeared, where any hints of a model were delib-

erately removed… Thus, the new theory represents by itself a step back…. 

It is very characteristic that neither Heisenberg nor Schrödinger… deny the 

fact of the existence of atoms and electrons. But because of the fear of difficul-

ties, which they encountered in the Bohr theory, they rejected ideas about mo-

tion of electrons in the atom. In new theory, there is nothing about an orbit of an 

electron… 

… Let us cite… the characteristic of Heisenberg’s theory given by H. 

Thirring (1888-1976, Austrian-born physicist) *: “Heisenberg’s theory repre-

sents a naked calculation scheme… The nakedness and unobviousness of this 

scheme are deliberate and desired. Responding to the question about the appear-

ance of an atom, Heisenberg could have answered approximately in the follow-

ing way: ‘fool, your question is senseless like the question of a child: was the 

infant Christ a boy or a girl?’. An atom is a thing, which should not look like 

something, in such a degree, similar to…who has signs of the sex and nationali-

ty. Atomic features are exhibited for our world of senses through the spectra, 

energetic levels, which are found under the excitation of atoms. And these quan-

tities are uniquely defined by the laws of quantum mechanics”. 

…It is interesting to note that Professor Sommerfeld, assuming that new 

theory of quanta represents a great achievement, nevertheless, very unambigu-

ously speaks about its dark sides… Sommerfeld’s views are so interesting that 

we cite their here completely **: “The clearly expressed intention, which was in 

the first Heisenberg work on quantum mechanics, is the development of the 

method, which will be based exceptionally on the relations between the observa-

ble values in principle. Such notions as, for example, the location of an electron, 

the time of its revolution, and the form of the path of its motion, must be rejected 

from consideration. This limitation, in framework of only principally observable 

quantities, is based after all on Mach’s philosophy. 30 years ago, leaning directly 

upon Mach, the popularization of the so-called energetics took place. Energetics 

has proposed to recognize only values of energy in the capacity of physically 

observed quantities”. 
 

Lois de Broglie wrote, in the Preface to D. Bohm’s book ***: “Classical 

physics has allowed the description of the evolution of events in nature, as caus-

ally unfolded in space and time … and, consequently, the creation of the clear 

and exact models (for the imagination of a physicist). On the contrary, modern 

quantum physics forbids any presentation of such kind and makes it impossible. 

It accepts only such theories, whose foundation is made up of quite abstract for-

                                                           
* Die Grundgedanken der neueren Quantentheorie, H. Thirring, Ergebnisse der exakten Naturwis-

sensschaften, VII Band, 1928, S. 410. 

** A. Sommerfeld, Atombau und Spektrallinien. Wellenmechanischer Ergänzungsband, 1929, 44. 

*** David Bohm, Causality and Chance in Modern Physics, L., 1957; IL, Moscow, 1959 (in Rus-

sian. 
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mulae, and cast doubts on an idea related to the causal run of atomic and corpus-

cular phenomena. It recognizes only the laws of probability and regards these 

laws as the laws, having the primary character and forming the final cognizable 

reality. It does not permit explaining these laws as a result of a causal evolution 

that occurs at the deeper level of the physical world…”. 

Lois de Broglie also noted in this work that physicists-theorists “under the 

influence of preconceived ideas, originated from the positivistic doctrine, as-

sume…, that the indefinite and incomplete character of knowledge about the real 

processes in physics of the microworld (obtained from the experiment at its 

modern stage) is a result of the real indeterminacy of physical states and their 

changes. Hence, such an interpretation, evidently, is not a justified one. Perhaps, 

in the future, during the process of the cognition of the deeper level of physical 

reality, we will be able to interpret the probabilistic laws and quantum mechan-

ics as a statistic result of the manifestation of the entire determined values of 

variables, which, in our time, are hidden”.  

In the conclusion of the Preface, Lois de Broglie wrote: Professor Bohm 

showed “that quantum mechanics has no right to regard its own modern views as 

final. And it is unable to forbid explorers to suppose an existence of the domains 

of reality, which are deeper than those, already investigated”. 
 

Note one more important work by L.V. de Broglie *. A manuscript of this 

work, published in 1982, is dated of 1950-1951, i.e., Lois de Broglie decided to 

publish it only 30 years later. In Preface, “The evolution of Lois de Broglie’s 

ideas concerning interpretation of wave mechanics”, de Georges Lochak (an 

editor of a French edition) focused attention on de Broglie’s doubts, concerning 

the right understanding of quantum mechanics bases: 

“His doubts became apparent through a great number of remarks, glued in 

between the manuscript pages, … corrections, and small but essential additions, 

which are in the book… A great deal changed during the 30 years, but at that 

time, an unexpected turn (change) of the views of one of the prominent physi-

cists of the 20th century was sensational and in some degree, even scandalous. In 

the corridors of Henri Poincaré’s Institute, all have spoken about Lois de Broglie 

in a low voice, as if a terminal disease had suddenly been discovered and as if it 

should reasonable be aside from him… The debate has grown to a scale of reli-

gious wars and have obtained the world character.” 

After careful research of many problems related to the atomic theories, “he 

came to the conclusion that the difficulties of the nuclear theory, like the diffi-

culties of quantum electrodynamics, are unremovable in the framework of 

generally accepted ideas. These difficulties caused by the fundamental inca-

pacity of all theory, in the large, to describe the space-time structures. In his 

                                                           
* L. de Broglie, Les Incertitudes D’Heisenberg et L’Interprétation Probabiliste de la Mécanique 

Ondulatoire, Gauthier-Villars, Bordas, Paris, 1982. (Russian edition: L. de Broglie, Heisenberg 

Uncertainty Principle and Probabilistic Interpretation of Wave Mechanics, Mir, Moscow, 1986) 



An Analysis of the Basic Concepts of Quantum Mechanics and New (Dialectical) Solutions 

 

167 

stronger growing persuasion, fully developed to 1952, he expressed by the fol-

lowing unequivocal phrase: ‘On this day, all possibilities of explanation of 

phenomena by wave mechanics, in that form, as it teaches, are, in a consider-

able extent, exhausted’.” 
 

Such are the historical estimations of quantum mechanics, as a theory, born 

on the basis of different philosophical trends of subjective character. Through 

these trends, one can refer to the different currents of the “philosophy of the 

blind”. The formal mathematical guessing and fitting to the experiment, in the 

spirit of abstractionism, is the essence of this philosophy. Organs of eyesight 

and, hence, the right cerebral hemisphere of man are announced as unnecessary 

ones, even harmful. The left cerebral hemisphere and a free game of notions of 

learned blinds is accepted as praiseworthy. It is not necessity to prove that a 

blind man, from his birth, is not able to understand the World, like quantum me-

chanics, which represent by itself the theory of aggressively blind theorists. At 

the beginning of the 21st century, it is time to recognize this impartial truth. 

It should also be noted that all humankind experience teaches that with the 

motion “up”, in Cosmos, it increases indeterminacy. On the contrary, with the 

motion “down”, in the microworld, it increases definiteness and accuracy, which 

are verified by modern electron technologies. 

After general historical and philosophical remarks, let us turn now to the 

analysis of Schrödinger’s radial functions, which are not of a suit with wave 

fields. We will begin from s-states of H-atom. 

Schrödinger’s radial functions of s-states define the electron density of 

probability, increasing the origin of coordinates. Hence, such solutions, uncondi-

tionally, point to the instability of the proton-electron dynamic system, more 

exactly, the impossibility of an existence of such a system. 

About this disagreeable effect of Schrödinger’s equation, N. Mott and I. 

Sneddon have gingerly noted as far back as the year, 1948 *. They have written 

that “wave spherical functions of s-states are spherically symmetric ones and 

they have the maximum in the origin of coordinates, at 0r . That means that 

probability of the penetration of the electron in an internal domain of the atom 

in such a case is too big” (taken from the Russian version of the reference *).  

Two physicists-theorists, Hans A. Bethe and Edwin E. Salpeter, have ex-

pressed quite opposite assertions **: “… We present the dependence )(2
,

2 rRr ln  

on r, i.e., the probability that the electron will be found in a spherical layer, be-

tween radii r and r+dr. … It is clear that the maximal charge density accounts 

                                                           
* N. Mott, I. Sneddon, Wave Mechanics and its Application, Oxford at the Clarendon Press, 1948; 

Russian translation by Nauka, Moscow, 1966, p.75. 

** Hans A. Bethe, Edwin E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms, 

Springer-Verlag, BerlinGöttingenHeidelberg, 1957; Russian translation by Fizmatgiz, Moscow, 

1960. 
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for the bigger and bigger radii, according to the increase of the main quantum 

number n”. Let us discuss the above-quoted polar statements. 

Schrödinger’s radial functions for H-atom are determined by the expression 
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where 1 ln   is the main quantum number, ai are constant coefficients of 

Laguerre polynomial. 

All radial functions of s-states, for which 0l , have the form 
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The first extremum of the radial functions of s-states falls on the origin of 

coordinates and is equal to 

     0,0max0, )( nn NaR  .    (5.3) 

It means that the most probable place of localization of the electron is in the 

center of nucleus. Then, it is not clear, how the electron pierces the nucleus, 

whose density (according to the nuclear model) is about 314 /105.2 cmg . It is 

impossible to imagine such a density. Most likely, something is wrong with the 

nuclear atomic model. 

Thus, for s-states, the density of probability is turned out to be maximal, in 

the origin of coordinates, and extremely small, on the orbit. So that, the electron 

must leave the orbit and, penetrating the nucleus, be in its center. How the elec-

tron contrives to penetrate the nucleus, of unimaginably huge density, is a baf-

fling question.  

Hence, the main effect of solutions of the equetion (5.1) is that s-states de-

stroy the Bohr postulate on the stability of orbiting of the electron and show that 

the electron, certainly, will fall dawn on the nucleus and, what is more, permeate 

into its central part. 

Here is a simple example. Under the condition 0  and 0l , an infinite 

series of the radial function is cut off at the zero member and the radial function 

)(, lnR  takes the form 

     
 eR 20,1 .      (5.4) 

Its root, 01max,0,1  , corresponds to the maximum of this function which results 

in the infinite value of energy: 

     
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.    (5.5) 

The absurdity is evident that does not require comments. 

After getting rid of such disagreeable conclusions, the new wave radial 

function rRP lnln ,,   was invented, frankly in the spirit of a free game of no-
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tions. How did they do it? Very simply. The real radial function lnR ,  was arbi-

trary multiplied by the radius r. Such a mathematical game allowed to “prove” 

the stability of the H-atom “in full agreement with quantum mechanics”. Obvi-

ously, 0,,  rRP lnln  is always at 0r . 

In accordance with Born’s interpretation, the density of probability to find 

the electron in an arbitrary point of space is defined by the modulus squared of 

Schrödinger’s wave function. In spherical polar coordinates, the wave function 

has the form 

    
ti

ln e  ),,(, ,     (5.6) 

where  

   )()()(),,( ,,,  mmllnln R      (5.6a) 

is the amplitude (spatial) function. 

The probability density of location of the electron in an elementary volume 

dV is determined by the differential 

   dVdVdVdw wrlnln    *
,, ,   (5.7) 

where 2
,lnr R , 2

,ml , and 



2

12
 m  are, correspondingly, the 

radial, polar,  and azimuth components of the probability density;  rw   

is the total hypothetical probability density, which can be presented as  
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As follows from the equation (5.7), dimensionality of the wave function  

(if the length of space is measured in centimeters) is 

    2
3

,, /1dimdim cmlnln   .    (5.9) 

This dimensionality has no physical sense, because no physicist can show 

in reality the space with the dimensionality 2
3

cm . In this sense, Schrödinger’s 

wave function is a mathematical fantasy, far from reality. However, this draw-

back can be easily removed if the density of probability is determined according 

to the following expression: 
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where 0  is an elementary volume of space, which is determined on the basis of 

the wave equation, or some physical conditions. From Schrödinger’s equation it 

follows that 
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where r0 is Bohr radius, Z is the ordinal number of a hydrogen-like atom. 
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A hypothetical picture of the most probable electron density is defined by 

the extremes of the total density of probability in the three-dimensional space. 

But, because the azimuth component is constant, hence, the most probable dis-

tribution is determined, in essence, by two extremes of densities, 2
,lnR and 2

,ml .  

In spherical polar coordinates, an elementary volume drddrdV sin2  

allows writing an elementary probability (which represents, strictly speaking, the 

third order differential) as 
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            (5.12) 

where ar / . 

If we require the consideration of the probability within a spherical layer of 

an interval ),(  d , then it is natural to perform the partial integration with 

respect to  and . It leads to the second order differential 
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The coefficients of polar and azimuth functions are determined, in quantum 

mechanics, on the basis of the integrals of normalization of these functions: 
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In virtue of this, the equation (5.13) can be rewritten in the following form 

      dRdw ln
22

, .     (5.15) 

The coefficient of the radial function is defined by the integral 

     1
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22
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

 dR ln .     (5.16) 

The equation (5.16) allows the manipulation with the notion of the radial 

density of probability by introducing the new radial function lnln RP ,,   and, 

correspondingly, the pseudo density  the “radial probability”: 

     
22

,
2
,, lnlnln RPD  .    (5.17) 

The pseudo density D creates an illusion as if the probability of location of 

the electron in the origin of coordinates, i.e., in the center of H-atom, is equal to 

zero. Here is an example (taken from the Russian version of the book *) of tech-

nology of formation of the radial component of pseudo -function: 

                                                           
* W.H. Flygare, Molecular Structure and Dynamics, Prentice-Hall, Inc., Englewood Cliffts, New 

Jersey, 1978; Russian translation by Mir, Moscow, 1982, V.1, pp. 180-181. 
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“The most probable value r is obtained from the expression 

),(),(),( * tttP rrr  . The probability of location of the electron within a 

small domain between r and r+r is equal, at 0r , to 
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where )(, rP ln  is the function of the radial distribution for a hydrogen-like atom 

(the probability calculated per unit length)…. Returning to the expression for the 

radial distribution of probability density )(, rP ln , we can write 

    
2

,,,, )]([)]()][([)( rRrrrrrP lnlnlnln   , 

where )(, rR ln  is determined as the radial amplitude function”. 

Analyzing the above-presented material, we observe an excellent game of 

symbols in the required direction. (For definiteness, let us designate the pseudo 

radial function by the symbol )(
~

, rR ln ). At first, the standard symbol of the radial 

function )(, rR ln  is substituted for the nonstandard symbol )(, rln . Then, using 

the standard symbol of the radial function )(, rR ln , the pseudo radial function is 

introduced in accordance with the equality 

     )()( ,, rrrR lnln  .     (5.18) 

Such a logical tightrope walking means only one thing: “the radial function 

does not suit us because it shows that the orbiting electron is unstable; this is 

why we substitute the symbol, and the notion itself, of the radial function 

)(, rR ln  according to the following correspondence:  

    )()(
~

)( ,,, rrRrRrR lnlnln  ”.   (5.18a) 

After such manipulations, there is no choice, as only to present the dia-

grams of the “radial amplitude function )(, rR ln ”, i.e., the pseudo radial function 

)(
~

, rR ln . But now we have the absolutely other picture of the distribution, where 

the “probability” to find an electron in the center of a nucleus, in all cases, will 

be equal to zero. 

In actual fact, if we will lean upon the real radial function, we must recog-

nize that at 0l  motion of the electron around the nucleus is, to the higher de-

gree, the unstable one and the electron must “bore” the nucleus and prove to be 

in its center. However, such a conclusion was undesirable for creators of quan-

tum mechanics. 

 Thus, removing the troublesome radial function )(, rR ln  (or that is the same 

)(, lnR ) from the probabilistic description of the electron motion and substitut-

ing it for the pseudo radial function )(, rrR ln  (or )(,  lnR ), the “explanation” of 
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an existence of stationary states of the hydrogen atom, in accordance with Bohr 

theory, “turns out well” in some cases. 

Of course, W.Flygare had no relation to the birth of such a mathematical fit-

ting. He plainly tried to substantiate by his own way the evident substitution of 

Schrödinger’s radial function for the pseudo radial function. 

On the basis of formulae (1.9), (1.9a), and (5.1), Schrödinger’s -function 

for H-atom can be written as 
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   (5.19) 

where 
a

k 1  is the number, inverse to Bohr radius a. 

Let the coefficient of the variable r will be presented in the following form: 

     
l

ik
kr





,      (5.19a) 

where 1  is the number of members of Laguerre polynomial. Then the 

Laguerre polynomial can be written as 
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As a result, Schrödinger’s -function will be presented in the following 

form 
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The radial component of the wave function 
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represents by itself the wave with the imaginary radial wave number and the 

amplitude (5.19b). At that the frequency  is also the “imaginary” one: 
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where v0 is the wave speed. 

Since the wave number kr of Schrödinger’s space is an imaginary quanti-

ty, therefore, Schrödinger’s -functions do not describe the spatial waves; 

they express the aperiodic perturbations of space independently of an interpre-

tation of -function. 

Accordingly, because of this reason as well, solutions of Schrödinger’s 

equation do not correspond to the real wave picture of the microworld. They 

exclude the formation of waves of H-atom in the surrounding space that is in 

full contradiction with reality. 
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As was already mentioned in Section 1 of this chapter, according to Born’s 

interpretation, the extremes of radial functions Rn,l define the radii of shells of 

the most probable states: ilnar max,, , where i is the number of an extremum. 

However, in an overwhelming number of cases, relative values of radii of 

extremal shells are not equal to integers squared: 2
max,, miln   and, hence, the-

se negate the condition of cutting off (1.5). Such shells define the energetic lev-

els, non-existent in nature: 
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Of all pseudo functions, only pseudo functions of the kind 
1

1, )/exp()( 
  n

nn nconstR   have extremes corresponding to the integers 

squared: 2n ; hence, they “confirm” Bohr’s orbits: 2
0nar  . In this connec-

tion, let us consider in detail the radial and pseudo radial solutions. We will de-

note the radii of shells of extremes of radial and pseudo radial functions, 

correspondingly, as iln max,, and isln max,, . 

The following pseudo radial function P1,0 corresponds to the radial function 
 eR 20,1 : 

      eP 20,1 .     (5.23) 

Its root is 11max,0,1 s . The energy, corresponding to it, 
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satisfies H-atom spectrum. However, the pseudo function itself (5.23) is not a 

solution of Schrödinger’s equation. So that, we have no right to apply its roots to 

the formula (5.22), which is related to the other (radial) function. 

 The rest of radial and pseudo radial functions, for 5,4,3,2n , have the 

form as follows. 
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Although the last energy satisfies the cutting off condition, but simultaneously 

the first root negates it. 
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energy takes place here (the fitting happens). In this case ( 1l , 0 ), the maximum 

density of the hypothetical probability R2,1 is defined by the root 21max,1,2  , which 

eliminates the cutting off condition and, hence, the value of the radial function becomes 

infinite, R . This unpleasantness has been “removed” by means of the pseudo radial 

function P2,1 the maximum of which 2
1max,1,2 2s  gives the energy, corresponding 

formally to the Bohr energy of the electron. But, as was elucidated above, this root has 

no relation to the radial function and, correspondingly, energy (5.22). This absurdity is 

inherent for all other functions. 
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1l , 1 :   
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681

4 23
1,3 






eP  (The pseudo radial function): 

227998127.2max,,1,3 s    7720018726.10         
sa

e
W

max,,1,300

2

8 
   R . 

----------------------- 

2l , 0 :   

   
23

2,3
3081

4





 eR : 

   61max,2,3     
68 00

2

a

e
W


    R . 

 
33

2,3
3081

4





 eP  (The pseudo radial function): 

 91max,2,3 s    
2

00

2

38 a

e
W


 . The formal “conformity” with 

Bohr energy takes place  the fitting happens. 
 

4n ,   
2

00

2

48 a

e
W


  (Energy by Bohr) 

By Schrödinger: 

0l , 3 :   

   )24144192(
768

1 324
0,4 






eR : 

  01max,0,4     
2

00

2

08 a

e
W


, 

 419589235.342max,0,4        90409441.9        673316353.22  

   
42max,0,400

2

8 


 a

e
W    R . 

 


)24144192(
768

1 324
0,4 


eP  (The pseudo radial function): 

 732343789.01max,0,4 s   
sa

e
W

1max,0,400

2

8 
    R , 
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 42max,0,4 s    
2

00

2

28 a

e
W


    R    

(The last energy corresponds to the H-atom spectrum, but it does not satisfy the cut-off 

condition by the reason which were elucidated above and leads to the divergence of the 

radial function, R ) 

649564176.104,3max,0,4 s   618092034.24     
sa

e
W

4,3max,0,400

2

8 
   R . 

----------------------- 

1l , 2 :   

   )2080(
15256

1 24
1,4 






eR : 

69690610.1max,1,4  , 7491349.8 , 55395899.21     
max,1,400

2

8  a

e
W      R . 

 )2080(
15256

1 224
1,4 






eP  (The pseudo radial function): 

  8303936591.2max,,1,4 s    589180277.9    580426063.23   

   
sa

e
W

max,,1,400

2

8 
    R . 

------------------------------------------- 

2l , 1 :   

   )12(
5768

1 24
2,4 






eR : 

071796769.52,1max,2,4       928203230.18        
2,1max,2,400

2

8  a

e
W        R . 

  )12(
5768

1 34
2,4 






eP  (The pseudo radial function): 

788897449.6max,,2,4 s       2111025509.21    
sa

e
W

max,,2,400

2

8 
         R . 

------------------------------------------ 

3l , 1 :   

    
34

3,4
35768

1





 eR :  

  121max,3,4     
1max,3,400

2

8  a

e
W     R . 

   
44

3,4
35768

1





 eP  (The pseudo radial function): 

  161max,3,4 s    
2

00

2

48 a

e
W


 .   
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The formal “conformity” with Bohr energy takes place here - the fitting has happened) 

5n ,    
2

00

2

58 a

e
W


  (Energy by Bohr) 

By Schrödinger: 

0l  , 4 : )2100150075009375(
546875

2 4325
0,5 






eR : 

  0max,0,5     3730382.3     46156165.9     4953468.19    6700533.37  

 


)2100150075009375(
546875

2 4325
0,5 


eP : 

 7288877086.0max,,0,5 s  9261159207.3   0897481038.10  3321188417.20  

      9231294250.39   
---------------------------- 

1l , 3 :  

  )29011253750(
3046875

4 325
1,5 






eR , 

  594239454.1max,1,5      172289247.8  80470089.18   4287704077.36  

    

 )29011253750(
3046875

4 3225
1,5 






eP : 

 7638777872.2max,,1,5 s  0359270606.9   3000556408.19  9001395111.38  

---------------------------- 

2l  2 :  

  )270525(
7046875

4 225
2,5 






eR : 

  804896151.4max,2,5    9559233.15  2391805.34  

  

 )270525(
7046875

4 235
2,5 






eP : 

 3157051741.6max,,2,5 s    990494945.16   693799880.36   

--------------------------- 

3l , 1 :   

 )20(
7046875

4 35
3,5 






eR : 101max,3,5    302max,3,5   

)20(
7046875

4 45
3,5 






eP : 192235935.122,1max,3,5 s    807764064.32  

------------------ 

4l , 0 :   

45
4,5

70140625

4





 eR ,   201max,4,5       
1max,4,500

2

8  a

e
W       R . 
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55
4,5

70140625

4





 eP ,  2
1max,4,5 5s    

2
00

22

58 a

eZ
W


   

(The formal conformity with Bohr energy takes place here  the fitting happens) 

 

Let us once more analyze the radial and pseudo radial functions. 

An introduction of the pseudo radial function means the substitution of 

Schrödinger’s n,l-function (5.19) for the new (pseudo) function lnln r ,,  , 

which does not satisfy Schrödinger’s wave equation, 

      


im
mln

rktiln
ln erkfe

N
r n 
 )(2

2
,

)(,
,  ,    (5.24) 

where 
1


lk

k
kn . At that the tacit transformation of the three-dimensional 

space of events into the one-dimensional space took place. Now, the H-atom is 

represented by a linear formation. 

Disregarding all above-stated and the fact that -function is not a solution 

of Schrödinger’s equation, let us continue the discussion: “is an introduction of 

this function, as the probabilistic function, rightful? The modulus squared, 
*

,, lnln  , defines the density of “probability” (compare with (5.8)): 

   
2
,

2
,

2
,

2
,

2*
,,

2

1

2

1
mllnmllnmlmlw PRr 


  .   (5.24a) 

Everything is revealed through a comparison; therefore, we will consider 

the classical problem, where we will deliberately make the same error, like the 

one accomplished at the introduction of the radial pseudo function Pn,l. 

Let us assume that some material points-events are randomly distributed in 

three-dimensional space, with the increasing density to the origin of coordinates, 

according to Gaussian distribution: 

    

 

22

2

33
2

1





r

ew




 ,     (5.25) 

where  is some parameter of distribution. 

The probability, that the material points-events are located within a small 

domain, between r and rr  , is 

 

 
 



 




rr

r

rr

r

rr

r

ww drredrrdVw
r 

 2

33

2 4
2

1
4

22

2




  .  (5.26) 

If 1r , then the integral (5.26) can be substituted for the finite differential 

   

 
rreVw
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 



 ,   (5.26a) 

where rrV  24  is an elementary volume of space, presented in the form of 

a spherical layer of the thickness r . 
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For the comparison of probabilities of events in different elementary do-

mains of three-dimensional space, we must take only equal volumes V . Oth-

erwise, the picture of probability will be distorted.  

Probabilities of events in two arbitrary equal spherical layers-volumes, 

    

 
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2
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33
1 4
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are defined by the following relation 
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.    (5.26b) 

The partition of the space of events into equal volumes, in which, directly 

or indirectly, frequencies of random events are counted up, is an indispensable 

condition. It is the indispensable procedure for the probabilistic estimations of 

events. Accordingly, it is inadmissible to violate this axiom if we wish to see the 

objective picture of events, but not its distorted image. 

For example, we are interested in the probabilistic trajectory of the move-

ment of a Mr. “N”, within the bounds of a small town. For this purpose, we must 

divide the town into parts of equal areas. Then, it is necessary to count up the 

frequency of appearances of “N” there (in every part of the town) during a long 

enough period of time. As a result, we will obtain the field of probability of the 

events. Obviously, in this field of events, some line of extremal values of prob-

ability, which defines the probabilistic movements of “N”, will be found. The 

probabilistic trajectory will coincide, mainly, with the route to his work, and it 

also will reflect his definite business and private interests. 

Taking into consideration all of the aforementioned, we can return to our 

problems. What will happen if the formula of differential probability (5.26a) will 

be rewritten as follows? 
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 .   (5.27) 

Following formal logic, the change of positions of cofactors in a formula 

does not change its product; so that, no errors were committed at rewriting of the 

equation (5.26a) in the form of the equation (5.27). Dialectical logic asserts that 

at the permutation of cofactors (which resulted in the formation of new cofac-

tors) there is no quantitative error, but a chance exists for qualitative error. The 

latter leads to gross distortions of the described events and to the erroneous 

quantitative effects. 



Chapter 3 180  

In the expression (5.27), the first step, on the way to distortions of the ob-

jective field of probability, was made. Namely, the differential volume 

drrdV 24  was substituted for the new differential dr, which takes the con-

stant value in all points of the space of events. In such a case, the former equal 

differentials dV will be related between themselves as 
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2
2

1

2

r

r

dV

dV
 .      (5.28) 

Now, it is impossible to speak about a comparison of events. The density of 

pseudo probability can be called the “radial probability” or the “linear density”. 

It must be written, according to the equation (5.27), in the following form 
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For comparison, the plots of functions of the density w  and the pseudo 

density r , for 1 , are presented in Fig. 3.8.  
 

 
 

Fig. 3.8.  Plots of the density w  and the pseudo density r . 

 

The graph of the real density of probability w , in the three-dimensional 

space, shows that the probability of distribution of material points-events in-

creases in the direction of the origin of coordinates. Quite the contrary, the 

pseudo probability, related to the linear space (where there are no material 

points-events) points out that the “probability” of finding the events falls to zero 

in the origin of coordinates. 

It is a direct evidence of absurdity. Figuratively saying, operating with 

mathematics in the spirit of a free game of notions, the “black” (the maximal 

distribution in the origin of coordinates) is announced as the “white” (the zero 

distribution in the origin of coordinates). This absurdity has happened because 

the equal differential volumes of space, drrdV 24 , were deliberately substi-

tuted for the differentials-functions 

    const)(4)( 2drrdV  ,     (5.30) 

where drd const)(  is the constant differential in all space of events. 
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As an example of inadmissibility of such erroneous transformations, let us 

imagine a spherical galaxy, in which the density of stars is expressed by the 

function (5.25). The above mentioned manipulation with the linear density will 

lead to the laughable conclusion, as if the probability of finding of stars falls to 

zero, according as we approach to the center of the galaxy. 

We can supplement the problem, in question, with an example of the two-

dimensional distribution of material points-events by the Gaussian distribution 

with the density of probability 
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and the differential probability 
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Here, the falsification of events is also possible through an introduction of the 

“radial probability” 
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which announces the zero probability in the origin of coordinates. 

Let us imagine an ant-hill in a forest. Its external contours correspond to the 

graph of the density of probability (5.31) (Fig. 3.9a).  
 

 
Fig. 3.9.  The transformation of the structure of a studying object (a), described 

by the density of probability w , similar to (5.31), into the complete-

ly other object (b), described by the different, in principle, “radial 

probability” r  (5.33). 
 

Obviously, the probability of distribution of ants in the ant-hill follows the 

similar formula of density. Now, we decided to prove that, as approaching to the 

center of the ant-hill, the probability of finding of ants there falls. To this end, it 

is necessary to take advantage of the “radial probability” (5.33) (Fig. 3.9b). We 

propose to theorists of such probabilities to poke a hand in the center of an ant-

hill in order to examine the correctness of their “theory”. 
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Thus, in positivism, the notion the truth is a subjective notion. The true one 

is that it satisfies “practical needs” of a theory. And the correspondence of a the-

ory to the real picture of nature has, most often, the speculative character, be-

cause the world, by positivism, is the subjective reality. 

For the completeness of the above analysis, we should touch the case of the 

linear distribution of probability of material points-events by Gauss, with the 

density of probability 
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and the differential probability 
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In this situation, the actual probability and the “radial probability” are equal 

(coincide); accordingly any distortions are impossible here.  

In virtue of all above-stated, an introduction of the pseudo radial function in 

the three-dimensional space of events of the H-atom is unlawful and represents 

the method of the coarse fitting to the required results. Such formal constructions 

obtained the wide dissemination in physics. 

Let us consider now the discrepancy of the radii of stationary shells, defined 

by Schrödinger’s radial functions, with the radii, defined by Bohr postulates. As 

an example, we will take the radial function R3,0, corresponding to the numbers 

2  and l  0  ( n  3): 

    )21827(
381

2 23
0,3 






eR .   (5.35) 

One- (a) and two-dimensional (b) graphs of change of the radial component 

of density of probability 2
0,3R , in the dependence on the distance, along the ra-

dius , are presented in Fig. 3.10. 
 

 

Fig. 3.10.  The density of hypothetical probability of s-state, 2
0,3R , for Schrö-

dinger’s -function with the parameters, 3n  and 0l . 
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The radial function squared, 2
0,3R , has the maximum in the origin of coordi-

nates. There are also two smaller maxima, defining the two shells of the most 

probable localization of the electron (if we will strictly follow the quantum me-

chanical interpretation of -function). Extremes of the radial function are as fol-

lows: 

 01max,0,3  ,      531370333.32max,0,3  ,   46862697.113max,0,3  . 
 

At the same time, according to the cut-off condition, only the radius 

932   defines the stationary shell of the electron, corresponding to this 

function. Two vertical lines in Fig 3.10a, at the distance equal to 9 from the ori-

gin of coordinates, indicate its location. As we see, there is no maximum (shell) 

of such radius among extremes of 2
0,3R ! It is no wonder, the radial function R3,0 

is “ignorant”. It does not “know” that it represents by itself the reduced function 

(obtained as a result of the cut off operation) and, therefore, it cannot defines 

anything here, including the most probable localization of the electron. 

Let us assume that the radial solutions for the H-atom in quantum mechan-

ics are correct. Then, it is necessary to pay attention to the next myth, concerning 

an absence of trajectories (orbits) in the solutions of Schrödinger’s equation. It is 

easily to verify that Schrödinger’s -functions define orbits, along which (in 

accordance with his equation) electrons move. 

The natural wave motion occurs along wave trajectories. For example, the 

trajectories of charged particles are observed experimentally, but they are called, 

by the modest word, “tracks” in order to confirm the “absence” of trajectories. 

Here, we meet with the practical application of the method of “a free game of 

notions”, when the indisputable fact of an existence of trajectories is linguistical-

ly concealed. A trace of a charged microparticles, for example in the Wilson 

cloud chamber, is similar to a trajectory of a jet plane, which left a trace on its 

way, which can be also called a “track”. But such a verbal trick cannot change 

the reality of an existence of trajectories of planes.  An analysis of trajectories of 

charged particles in the magnetic field lies in the base of mass spectrographs. 

Why, if they exist outside, cannot trajectories be inside atoms?  

Schrödinger’s equation was built on the basis of an introduction the energy 

of an electron (orbiting around a proton) in the wave equation. Namely, it was 

constructed on the basis of Kepler’s laws, which uniquely presume an existence 

of trajectories. Hence, solutions of Schrödinger’s equation must contain the 

probabilistic trajectories. 

The calculations of the three-dimensional distribution of maxima of the 

modulus of the wave function 1,3,n  are presented in Fig. 3.11. These maxima 

point to an existence of three probabilistic circular trajectories (Fig. 3.11d).  

An existence of probabilistic trajectories is quite natural, since 

Schrödinger’s equation realizes the transition from an orbit to the probabilistic 
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field of motion. Extremes of the wave function in such a field must coincide 

with these trajectories. The data, presented in Fig. 3.31, confirm this. 

In the above-presented example, the modulus squared 
2

1,3,n  defines three 

circular trajectories: two polar, Cn and Cs, and one equatorial, C0. Two polar tra-

jectories are defined by principal extremes of the wave function; the equatorial 

trajectory – by the collateral extremes.  

 
Fig. 3.11.  The polar surface of the modulus )(1,3   (a); the cones of the max-

imal density of the polar probability (b); the combination of the 

sphere of the maximal radial probability density and the cones of the 

maximal polar probability density (c); the three-dimensional distribu-

tion of maxima of the modulus of the amplitude function 

)()()( 11,33,1,3,  nn R , or )()( 1,33,1,3,  nn R  (d). 

 

On such orbits, as was discussed above, the total energy of an electron does 

not conform to the hydrogen atom spectrum. It is impossible also to co-ordinate 

the most probable polar trajectories with the usually accepted, quantum mechan-

ical, interpretation of Schrödinger’s equation solutions *. 

In the spirit of traditions of some physicists of the first half of the 20
th
 cen-

tury, M. Clyde and J. Selbin have regarded, in their book **, Schrödinger’s equa-

tion as a particular case of the general wave equation. It is impossible to disagree 

with their view: 

                                                           
* L.G. Kreidik and G.P. Shpenkov, Foundations of Physics, Bydgoszcz, 1998. 

** M. Clyde, Jr., Joel Selbin, Theoretical Inorganic Chemistry, Reinhold Dublishing Corporation, 

N-Y, Chapman & Hall, LTD, London; Russian translation by “Himiya”, Moscow, 1969, p. 49. 



An Analysis of the Basic Concepts of Quantum Mechanics and New (Dialectical) Solutions 

 

185 

“The wave function is presented as tiezyx   ),,( . Then, the general 

wave equation is transformed, by form, into Schrödinger’s wave equation by the 

following way: 
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Because the wave equation describes the plural mass processes, the value of 

energy in Schrödinger’s equation should be regarded as a fundamental measure 

of the wave field of the studying object. Hence, there are no bases to assert that 

the orbits (Fig. 3.11) must belong, without fail, to the electron. 

G.C. Pimentel and R.D. Spratley, describing the basic concepts of quantum 

chemistry *, have noted the following. The standard requirements (to the proper-

ties of -function) have “stipulated an appearance, in the wave equation solu-

tion, of the linear spectrum, which exactly coincides with the hydrogen atom 

spectrum” (the Russian version *, p. 30). As follows from the above considered, 

all these “exact” coincidences is the myth and nothing more. 

Another widespread opinion, contained in their work (p. 31), is that “ does 

not contain information about a trajectory of motion of an electron. Actually, in 

the microworld, the notion of the “electron trajectory”, in an atom and molecule, 

loses a sense. Instead of the trajectory, the modulus squared, 
2

 , allows one to 

determine only the probability of location of the electron in the volume. The 
2

 -value is bigger, when the probability of location of the electron is higher, 

and smaller, when the electron appears seldomly. At the nodal surface, where -

value is equal to zero, the electron could never be ”. 

All these assertions, which have been repeated for tens of years, do not cor-

respond to reality (see, once more, the solutions of Schrödinger’s equation, pre-

sented in Fig. 3.11). Apart from the considered above, the next question arises. 

How has it happened that the field of all -functions is created by one electron, 

which is “spread” over all space? Maybe it is the field of possible positions of 

many electrons, belonging to different H-atoms. In the last case, Schrödinger’s 

equation describes some “averaged probabilistic” H-atom, but this picture does 

not agree with H-atom spectrum. 

 Regarding the Bohr postulates, they wrote * (p. 46): “… a fault of the 

atomic planetary model, able to call headache, is the demand that the motion of a 

charged electron along a curvilinear trajectory will occur without radiation and a 

loss of energy. This difficulty does not arise in quantum mechanics, since the 

                                                           
* G.C. Pimentel and R.D. Spratley, Chemical Bounding Clarified Through Quantum Mechanics, 

Holden-Day Inc., San Francisco-Cambridge-London-Amsterdam, 1970; Russian translation by 

“Mir”, Moscow, 1973. 
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notion of the “trajectory” is absent there. The wave description of the electron 

does not give any information about an existence of its trajectory. Therefore, the 

question about a lost of energy, caused by the radiation, in such a model, gener-

ally, does not arise. Moreover, it is impossible to say that a trajectory exists. 

Quantum mechanics plainly does not accept it. At the transition from the classi-

cal equation of motion to the equation of quantum mechanics, a member, corre-

sponding to the kinetic energy, was changed by definite means. We can render 

these changes in the form of the following order: Break off think about trajecto-

ries – we cannot approach the nature and describe the atomic properties by the 

equation of motion, which contains the notion of the “trajectory”. And, actually, 

we must not regret about it. If there is no trajectory, then the electron must not 

emit energy. As we know, the latter is really so”. 

As follows from the solution, shown in Fig. 3.11, all above cited quotations 

are, in essence, emotional assertions. They remind us the literary stories, which 

do not rely on the solutions of Schrödinger’s equation, but only repeat the my-

thology of formal suppositions. They are not supported by proofs, because, 

throughout the existence of quantum mechanics, the three-dimensional distribu-

tion of extremes of Schrödinger’s -functions has never been presented. If only 

this would be done, a myth on the absence of orbits (trajectories) would disap-

pear. 

Finally, let us briefly touch upon the radiation of potential-kinetic waves 

emitted by the H-atom. The natural motion in the Universe is the longitudinal-

transverse motion-rest, the main form of which is the spiral-like motion. This 

motion represents by itself a superposition of two mutually perpendicular plane-

polarized waves. It is the natural vortical motion-rest. And all natural motions in 

nature are based on the dynamic equilibrium of exchange of matter-space-

motion-rest, which forms the “zero” equilibrium radiation. 

If some disturbance of the equilibrium happens, then the wave perturbations 

of matter-space arise. In particular, the orbital motion of an electron, as the natu-

ral motion, takes place arbitrarily for a long time, until the dynamic equilibrium 

of the exchange of matter-space-motion-rest of the H-atom with the ambient 

field of matter-space, will not be upset.  

When we set a charged macroobject in a uniform rotation, the definite per-

turbation in the surrounding space arises as a result. Such a motion is unnatural 

(artificial) and, therefore, accompanied always with the wave perturbation.  

On the contrary, the orbital motion of an electron is the natural motion in H-

atom space. It is a part of the wave motion of matter-space at the subatomic level 

with its own dynamic equilibrium “zero” radiation. Such a state of motion of the 

electron is continued so long, until some wave perturbations will transfer it in a 

new stationary state. And again, the electron transition, in the new state, is ac-

companied with the wave perturbation of the ambient field of matter-space, 

which raises over the zero exchange (radiation). 

 


