Parameters of circular motion-rest
George P. Shpenkov

This is a corrected version of several paragraphs of the book “Atomic Structure of Matter-
Space” by L. Kreidik and G. Shpenkov, published in 2001 [1], in which a few technical
editorial and author’s mistakes were made, due to confusion with signs in mathematical
expressions when describing circular motion-rest. This did not affect the general concept, but
influenced in some extent on correctness of the corresponding particular conclusions
concerning mainly of the direction of some of the constituent parameters that characterise
such a motion.

I. The circular kinematic field of motion-rest

1.1. The potential-kinetic radius-vector of motion-rest.
Vector and scalar forms of potential-kinetic parameters.

The complete description of motion of a material point along a circumference is first
presented here. Let us begin with the uniform motion.

The uniform motion along a circumference is complicated, consisting of two mutually
perpendicular potential-kinetic harmonic oscillations.

For the definiteness, we assume that the motion along the axes, x and y, is defined by the
potential-kinetic displacements ¥, =ae'* and ¥, =-i¥, = —iae'*. A displacement along y-
axis is the negation of a displacement along x-axis with the negative sign, defining the
clockwise motion. If P, =i, =iae"", the anticlockwise motion takes place.

To describe the kinematics of motion, we use the four unit vectors: the unit tangent
vector T, directed along motion; the unit vector n, defining the direction of the radius-vector
a; the unit vectors of the x and y axes, correspondingly, k and | (Fig. 1a).

Thus, the structure of motion clockwise along a circumference is defined by the
potential-kinetic displacements:

¥, =y,, +v, =acosot+iasinet ,

A

VY, =y, +iy, =asinot—iacosot . (1.1)
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Fig. 1.  The kinematics of motion-rest along a circumference: a) the four units vectors; b)
r, =an is the potential vector of motion, r, =iat is the kinetic vector of motion;

¢) v, =iwan=ivn is the potential velocity, v, =wat =vt is the kinetic velocity;
d) ®,=ion is the potential angular velocity, e, =wrt is the Kinetic angular
velocity; e) w, :oo"‘rp =w’an=wn is the potential  acceleration,

w, = o’r, =in’at =iwr is the kinetic acceleration.

The unit vectors, n and t, of the mobile basis are expressed through the unit vectors, k
and |, of the motionless basis in the following way:

n=cosot-k+sinot-1 , T=sinot-k—coswt-1 (1.2)
Because |-vector is the space negation of k-vector, we can write
= jk or k=-jl, (1.3)
where j is the unit of space negation, pointing out the mutual orthogonality of properties.

A sense of the unit negation j is the anticlockwise turning about 90 degrees of the vector,
which is negated.

On the basis of (1.3), we arrive at the new representation of the vectors n and t:
n=kel, T=—lel", (1.4)

It is obvious that the units, i and j, as the units of negation, are equal because they follow
the same algebra of negation, but qualitatively they are different, since they express different
negations.

This dialectical assertion can be presented by the following dialectical antinomy
(i=Dg Al =),

where the index g indicates the quantitative equality of both vectors, and the index k — their
qualitative inequality.



The displacements, ¥, and li'y, define the potential-kinetic vector ¢ of motion along a

circumference (Fig.1b):

P=Wk+W¥ |=ae" k+(—iae™) - 1=r, +r, (1.5)
or
F=(a-k-ia-1)e' =r +r,. (1.6)
Here,
r, =y, k+y, l=acosot-k+asinot-1=ake =an (1.7)

is the potential radius, characterizing the constant (potential) side of revolving motion,
directed along the radius-vector of a moving point;

ro=vk+y,l=i(@sinot-k—acosot-1)=—ia-le =iat (1.8)

is the kinetic radius, characterizing the variable (kinetic) side of revolving motion, directed
along the motion of the point.

Thus, the potential-kinetic vector f , which we will denote also as a, takes the form (Fig.
1b):
a=(ak —ial)e!" =4, =an+iar, (1.9)
where 4, = ak —ial and
a,=an, Qq =lart. (1.10)

Removing the unit vectors, n and 1, of the mobile basis, we will obtain the scalar form of
the vector a in the mobile basis
d=a+ia. (1.11)

The potential radius expresses the degree of stay, and the kinetic radius — the degree of
non-stay, of a material point in every point of the circular trajectory. The potential-kinetic
radius defines, simultaneously, the stay and non-stay of the material point in every point of
the circular trajectory.

Removing vectors k and | of the motionless basis in the expression (1.4) or 1.9), we will

A

obtain the scalar form R of presentation of the potential-kinetic vector # in the motionless
basis:

R=W¥, +%,=8"" o R=&" =(a+ia)e . (1.12)
Because any process in nature has a contradictory directed-undirected character, we
present all physical parameters of fields and objects in vector and scalar forms.

Thus, we see that the circular field of matter-space-rest-motion represents the
longitudinal-transversal (or radial-tangential) field, where the field of rest (the potential field)
and the field of motion (the kinetic field) are mutually perpendicular.

The radial field is the potential field and the tangential field is the kinetic field that is
expressed by the structure of the radius-vector (1.9).



2. The kinetic-potential velocity of motion along a circumference

The linear and angular velocities characterize the motion along a circumference:
v—E—@— m_d_cp_ds/a_(ds/a)r_d(pr_
dt dt dt dt dt dt
where d¢ is the vector differential of the arc displacement ds/a and a is the radius of
circumference.

vt ot, (1.13)

A

The derivative of the radius-vector & (1.9) determines the kinetic-potential velocity of
motion along the circumference (Fig. 1c)

. da d .
V=—=—(an+iat) = mat +wan
dt dt
. da . .
or V=E=Vk+vp=o‘c+lun, (1.14)
where v=wa and
g, = 9 (1.15)
V, =——=0UT .
< dt
is the Kinetic tangential velocity,
. a, .
V,=—==1lun 1.16
P = gt (1.16)

is the potential normal velocity.

The corresponding angular velocities have the following form:

&:i%:&k_'_&p =®T+10N, (1.17)
da
o, 1% _dn_ o (1.18)
a dt dt
P L L (1.19)
a dt dt

A scalar form of the velocity (Fig. 1c) in the motionless basis is

dR

0= i vtV = i0de™ = (wa+ina)e™, (1.20)

where v, = mae™, v, =inae"". (1.21)
In the mobile basis, it is

0=y, +V, =wa+iva . (1.22)

Analogous forms of the specific velocity @ (Fig. 1d) correspond to the above-presented
scalar forms of the linear velocity:



iot

. 1dR :
m:gazmk+mp:(w+lm)e , (1.23)

where o, =ne"", o, =ioe" . (1.24)
In the mobile basis, it is
O=0 +o, =o+io . (1.25)
The kinetic tangential velocity is directed along the motion and the potential normal
velocity — along the radius-vector of the circumference.

The potential velocity is the centrifugal velocity of rest, which (under definite
conditions) can be transformed into the centrifugal velocity of motion.

The kinetic velocity characterizes both the quantitative side of motion and the qualitative
side of rest, whereas the potential velocity — the quantitative side of rest and the qualitative
side of motion.

3. Accelerations

The derivative of the potential-kinetic velocity determines the potential-kinetic
acceleration:

W=w, +w, =o’(an+iat), (1.26)
2

where W, =o’an=wn = Yn (1.27)
a

is the potential centrifugal acceleration;
2
W, =iolar=iwt=i——1 (1.28)
a

is the kinetic non-centrifugal acceleration.

The corresponding specific potential-kinetic accelerations have the form

=g, +§, =w’(n+it), (1.29)

. W
E=—
a

where g =wn, g =iw’t. (1.30)

The scalar forms of the accelerations in the motionless and mobile bases are,
correspondingly, equal to

W=, W=w’ae"", (1.31)
g=w’ (L+i), W=’ (1+i)e". (1.32)

The potential normal, or centrifugal, acceleration is directed along a radius-vector of the
circumference and the kinetic tangential, or rotational, acceleration is directed along the
motion.



All types of the above-considered accelerations, which describe uniform circular motion,
are the qualitative accelerations. They characterize the change of the field of motion-rest only
along the direction. Besides, the relation of quantity and quality connects the potential and
kinetic accelerations between themselves.

I1. The circular dynamic field of motion-rest

1. The vector of potential-kinetic state in the circular motion
Under the motion along a circle, the state vector S (see (1.5)) has the form

S=mi=m(¥,k+¥ N)=mr, +mr,=S_ +S,, (2.1)
where

S, =mr, =make’” =man (2.2)

is the vector of the potential state,
S, = mr, =—miale’” = miat (2.3)
is the vector of the kinetic state.
Their scalar forms in the fixed and mobile bases are, correspondingly:
S, =mr, =mae’*, S, =mr, =ma (2.4)

S, =mr, =miae’", S, =mr, =mia. (2.5)

2. The Kinetic-potential momentum

The kinetic-potential (or kinematic) momentum of a point on the circumference,
according to the equation (3.5), is

A

P=mV=mout+imon.

This formula can be obtained also by the following way:

. dS dS, ds .
p=%=d_tp+d—:=pk+pp=mm+|mun, (2.6)
where
ds,
is the tangential kinetic momentum and
dSk - - ](Ut - -
p =——=—]omiale’” =mipan=mion (2.8)

is the normal (or centrifugal) potential momentum.



Thus, the momenta of motion and rest represent the kinetic-potential momentum. These
momenta are mutually perpendicular, which reflects the mutual orthogonality of fields of
motion and rest.

In the motionless and mobile bases, scalar forms of the momenta are

ﬁ:%:mz}:muk+mup=m(u+iu)ej“’t, (2.9)
P=md=mou+miv. (2.10)

The potential-kinetic momentum (2.6) can be also expressed as

P=ml= jome ™ (ak —ial) = jorh(ak —ial) = G4, (2.11)
or
P =mV = dak - Gial , (2.12)
where
M=me'* =mcosat + jmsin ot (2.13)

is the longitudinal-transversal mass of the oscillator, defining the corresponding longitudinal-
transversal charge

2

4= (jjr: = jome ™ = qcoswt + jgsin ot . (2.14)

Thus, in the motionless basis, the kinetic-potential momentum (2.12) represents by itself
the two polarized oscillatory waves of moments of charge, correspondingly, in the planes
ZOX and ZOY:

A

P=P, =P, + Py = Gak - gial , (2.15)
where
Py = Gak (2.16)

is the potential kinematic moment of charge,
P =-dial (2.17)
is the kinetic kinematic moment of charge.

In the mobile basis, the kinetic momentum
p, =mut =p, =dgat=iq(iat) =iga, (2.18)
is the tangential moment of the kinetic charge q=@m and the potential momentum
p,=mion=p,, =igan=iga, (2.19)
is the radial moment of the potential charge iq=iwm.
Their scalar forms in the motionless and mobile bases are as follows:

P, =(qa+iga)e’*, P, =qae'”, P, = igae



Py =42, Py = dia, (2.20)

where § is the potential-kinetic charge defined by the formula

q = —= ia)rﬁ = qei(wt+%n) (221)

g=wm is the modulus of the charge.

3. The kinetic-potential charge
The specific momentum defines the vector kinetic-potential charge:
Q=Pla=§,+§, =qt+qin. (2.22)

Its scalar form is: in the motionless basis

Q=P/a=(q+ig)e’™ (2.23)

and in the mobile basis
G=q+iq. (2.24)

The kinematic charge is related with the rotor-divergence of velocity and momentum:
rodiV\”/=rot\”/+diV\”/=2%, (2.25)
rodivP = rotP + divP = 2Q; (2.26)
at that,
rot(P) = Q,, rol\7=2%=2§k, (2.27)
. Q.

rotP=Q,, rotv=2W=2pp, (2.28)

where p, is the vector of mass density of the transversal kinetic charge and p, is the vector
of density of the longitudinal potential charge.

4. The basic parameters of kinematic exchange

The rate (of the field) of change of momentum (or the power of exchange) describes the
exchange of rest-motion
A dﬁ) A A el 2 2. A
F=—=mW=F +F =mo’an+meiat = la. (2.29)
dt

The potential and kinetic powers of exchange are, correspondingly, equal to

2
. . mu
F,o=mW, = mo?an =

a

p n=1a,, (2.30)



2

R . . .mu .
F =mW, =mo’iat =i =14, (2.31)
a

and 1 =k =me?® = qe is the amplitude of the kinematic current.
The scalar form of the power of exchange in the mobile basis is
F=mi=F,+F =mo’a+me’ia=14. (2.32)

The specific power of exchange of momentum 1=F/a is the kinematic current

l=— ="=1_ +1, =—me’n+moiit=l(n+it , 2.33
st ar et ( ) (2.33)

where
I.=1In (2.34)

is the potential (or centripetal) current, and
I =il (2.35)

is the kinetic (tangential) current.
The scalar form of the kinetic current in the mobile basis is

=1, +1, =me’ +mo’i=1+il . (2.36)

The rate of exchange of momentum is perceived physiologically, at the level of
sensations, as “force”. This word is very unsuccessful. We should leave it for sport and
physiology, but in physics, it is necessary to use a different term. We call the rate of exchange
of momentum the “kinema”.

The rotor-divergence of kinema defines the kinematic current:
rodivF = rotF + divF =21 . (2.37)

According to the definition, there is the following correlation between the kinema and
current

E=ai. (2.38)

In its turn, the kinema, as the state of motion-rest, demands operating by the rate of its
change, which we will call the vector of mobility or mobilite (from the Latin, mobilitas =

mobility) D:
D=-—=a—=D,+D, =lv(t+in)=k¥. (2.39)

Thus,
D=D_+D, =k, (2.40)

where
D, =ilun and D, = lur. (2.41)



5. The moments of momentum and of kinema

The following potential-kinetic moments, by the definition, are related with the
momentum and kinema:

L=Pa=L, +L, =ma’b=Jé=Jot+Join, (2.42)
M=Fa=M,+M, =Je=Je, +Jg,, (2.43)

where
M, =Je, =Jo’™n (2.44)

is the centripetal potential moment and
M, =Jg, = Jo’it (2.45)
is the tangential kinetic moment.

A scalar ratio of the moment of kinematic charge
P=Qa=(q, +0,)a=gat+igan (2.46)

to the moment of momentum
L =mba=m(vr+ivn)a (2.47)
has the form
Qa _Q _ ga(z+in) _ g (2.48)

mia mo¢ moa(t+in) mo’

6. The energetic measures of circular motion-rest

The circular motion-rest has a many-sided character. It is described by a series of
energetic measures. The first energetic scalar measure of motion-rest along a circumference
of a material point is defined by the following integral

kd®>  mo’

- = (2.49)

Ezjﬁdézjmﬁdﬁz—Jlédé

The second energetic measure of the motion-rest on the basis of vector measures, is

é:jﬁda:jm(/dvz—padaz—k;:z:m;’Z,

or

. mvZ mvio2mv,v cosa mp2  m(io)?  2mv,V, cos(z/2)
E= + + = + +
2 2 2 2 2 2

and



or
2 2 2 2 i
mv, Mo p hoo h ol
_Mu p _ Py P _ E= @ Do

E = =
2 2 2m  2m 2 2

0, (2.50)

where 7, =mu,a is the kinetic moment of momentum and 7, =miv,a is the potential

moment of momentum.

Thus, under the motion along a circumference (as in particular it takes place with the
electron in H-atom), the potential-kinetic vector energy of a material point is equal to zero.
By virtue of this, the circular motion is the optimal (equilibrium) state of the field of rest-
motion, where “attraction” and “repulsion” are mutually balanced, which, in turn, provide
for the steadiness of orbital motion in the micro- and macroworld.

The quantitative equality of “attraction” and “repulsion” is accompanied, simultaneously,
by the qualitative inequality of the directions of fields of rest and motion, which generates the
eternal circular wave motion. In order to break such a motion, it is necessary to destroy this
system entirely. However, in this case, a vast number of new circular wave motions of more
disperse levels will appear as a result.

The third energetic measure of motion-rest is defined on the basis of the fact that the
motion along a circumference is the sum of two potential-kinetic oscillations.

Therefore, the total scalar measure of energy of motion-rest along a circumference is
equal to the sum of potential-kinetic energies, Ex and E,, of such oscillations:

2 2

E=E +E,=E +E, =0+ _mp? =no=hv, (2.51)

where

and

2 2 2
_ mup mup _ mo
Ep _[ 2 ]x +[ 2 ]y ) 2 (252)

are, accordingly, the total kinetic and potential energies of a material point in a circular
motion.

As follows from the formulae (2.52), the total kinetic and potential energies are equal.

Every energetic measure, of the above-presented energetic measures, expresses the
definite side of a many-sided process of motion-rest. If a radius of a circumference moves



towards infinity, then any part of this circumference can be regarded as a part of the
rectilinear motion-rest with the total energy

E=E +E, =mo?, (2.53)
where

[1] L. G. Kreidik and G. P. Shpenkov, Atomic Structure of Matter-Space, Geo. S.,
Bydgoszcz, 2001, 584 p.;  shpenkov.com/pdf/atom.html
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