
 

 

 

Parameters of circular motion-rest 
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      This is a corrected version of several paragraphs of the book “Atomic Structure of Matter-

Space” by L. Kreidik and G. Shpenkov, published in 2001 [1], in which a few technical 

editorial and author’s mistakes were made, due to confusion with signs in mathematical 

expressions when describing circular motion-rest. This did not affect the general concept, but 

influenced in some extent on correctness of the corresponding particular conclusions 

concerning mainly of the direction of some of the constituent parameters that characterise 

such a motion. 

 

 

I. The circular kinematic field of motion-rest 
 

1.1. The potential-kinetic radius-vector of motion-rest.  

       Vector and scalar forms of potential-kinetic parameters. 
 

The complete description of motion of a material point along a circumference is first 

presented here. Let us begin with the uniform motion.  

The uniform motion along a circumference is complicated, consisting of two mutually 

perpendicular potential-kinetic harmonic oscillations.  

For the definiteness, we assume that the motion along the axes, x and y, is defined by the 

potential-kinetic displacements ti
x ae ̂  and ti

xy iaei   ˆˆ . A displacement along y-

axis is the negation of a displacement along x-axis with the negative sign, defining the 

clockwise motion. If ti
xy iaei   ˆˆ , the anticlockwise motion takes place. 

To describe the kinematics of motion, we use the four unit vectors: the unit tangent 

vector  directed along motion; the unit vector n, defining the direction of the radius-vector 

a; the unit vectors of the x and y axes, correspondingly, k and l (Fig. 1a). 

Thus, the structure of motion clockwise along a circumference is defined by the 

potential-kinetic displacements: 

    ˆ cos sinx xp xk a t ia t       , 

    ˆ sin cosy yp yki a t ia t        .    (1.1) 



 

Fig. 1.  The kinematics of motion-rest along a circumference: a) the four units vectors; b) 

nr ap   is the potential vector of motion, 
k iar   is the kinetic vector of motion; 

c) vp i a i  v n n  is the potential velocity, 
k a  v    is the kinetic velocity; 

d) nip   is the potential angular velocity,  k  is the kinetic angular 

velocity; e) 
2 2

p p a w    w r n n  is the potential acceleration, 

2 2

k k i a iw    w r    is the kinetic acceleration. 

 

The unit vectors, n and  of the mobile basis are expressed through the unit vectors, k 

and l, of the motionless basis in the following way: 

   cos sint t     n k l , sin cost t     τ k l          (1.2) 

Because l-vector is the space negation of k-vector, we can write 

     kl j      or     lk j ,     (1.3) 

where j is the unit of space negation, pointing out the mutual orthogonality of properties. 

A sense of the unit negation j is the anticlockwise turning about 90 degrees of the vector, 

which is negated.  

On the basis of (1.3), we arrive at the new representation of the vectors n and : 

     tje 
kn  ,  j te   l .     (1.4) 

It is obvious that the units, i and j, as the units of negation, are equal because they follow 

the same algebra of negation, but qualitatively they are different, since they express different 

negations.  

This dialectical assertion can be presented by the following dialectical antinomy 

      kq jiji )()(  , 

where the index q indicates the quantitative equality of both vectors, and the index k  their 

qualitative inequality.  



The displacements, x̂  and y̂ , define the potential-kinetic vector r̂  of motion along a 

circumference (Fig.1b): 

    ˆ ˆˆ ( )i t i t

x y p kae iae        r k l k l r r    (1.5) 

or 

     kp
tieiaa rrl-kr  )(ˆ .     (1.6) 

Here, 

   cos sin j t

p xp yp a t a t a e a          r k l k l k n    (1.7) 

is the potential radius, characterizing the constant (potential) side of revolving motion, 

directed along the radius-vector of a moving point; 

  ( sin cos ) j t

k xk yk i a t a t ia e ia            r k l k l l τ    (1.8) 

is the kinetic radius, characterizing the variable (kinetic) side of revolving motion, directed 

along the motion of the point. 

Thus, the potential-kinetic vector r̂ , which we will denote also as â , takes the form (Fig. 

1b): 

     0
ˆ ˆ( ) j t j ta ia e e a ia     a k l a n  ,   (1.9) 

where lka iaa 0
ˆ  and 

      na ap ˆ , ˆ
k iaa  .      (1.10)  

      Removing the unit vectors, n and  of the mobile basis, we will obtain the scalar form of 

the vector â  in the mobile basis 

       â a ia  .      (1.11) 

The potential radius expresses the degree of stay, and the kinetic radius – the degree of 

non-stay, of a material point in every point of the circular trajectory. The potential-kinetic 

radius defines, simultaneously, the stay and non-stay of the material point in every point of 

the circular trajectory. 

Removing vectors k and l of the motionless basis in the expression (1.4) or 1.9), we will 

obtain the scalar form R̂  of presentation of the potential-kinetic vector r̂  in the motionless 

basis: 

   ˆ ˆ ˆ ˆ j t

x yR ae     or ˆ ˆ ( )j t j tR ae a ia e    .   (1.12)  

Because any process in nature has a contradictory directed-undirected character, we 

present all physical parameters of fields and objects in vector and scalar forms. 

Thus, we see that the circular field of matter-space-rest-motion represents the 

longitudinal-transversal (or radial-tangential) field, where the field of rest (the potential field) 

and the field of motion (the kinetic field) are mutually perpendicular.  

The radial field is the potential field and the tangential field is the kinetic field that is 

expressed by the structure of the radius-vector (1.9). 

 



2. The kinetic-potential velocity of motion along a circumference 
 

The linear and angular velocities characterize the motion along a circumference: 

  
d ds

dt dt
   

s
v


   ,    

/ ( / )d d a ds a d

dt dt dt dt

 
     

s  
  , (1.13) 

where d  is the vector differential of the arc displacement ads/  and a is the radius of 

circumference. 

The derivative of the radius-vector â  (1.9) determines the kinetic-potential velocity of 

motion along the circumference (Fig. 1c) 

     
ˆ

ˆ ( )
d d

a ia a ι α
dt dt

      
a

v n n   

or     
ˆ

ˆ ˆ ˆ
k p

d
ι

dt
      

a
v v v n ,     (1.14) 

where a    and 

      
ˆ

ˆ
p

k

d

dt
  

a
v        (1.15) 

is the kinetic tangential velocity, 

      
ˆ

ˆ k
p

d
i

dt
  

a
v n       (1.16) 

is the potential normal velocity. 

The corresponding angular velocities have the following form: 

     
ˆ1

ˆ ˆ ˆ
k p

d
ι

a dt
      

a
ω n   ,    (1.17) 

      
ˆ1

ˆ p

k

d d

a dt dt
   

a n
ω  ,    (1.18) 

      
ˆ1 (

ˆ k
p

d d i
i

a dt dt
   

a
ω n


.    (1.19) 

A scalar form of the velocity (Fig. 1c) in the motionless basis is 

     
ˆ

ˆ ˆ ( )i t i t

k p

dR
i ae a i a e

dt

            ,   (1.20) 

where    i t

k ae    , 
i t

p i ae    .    (1.21) 

In the mobile basis, it is 

      ˆ
k p a i a        .    (1.22) 

Analogous forms of the specific velocity ̂  (Fig. 1d) correspond to the above-presented 

scalar forms of the linear velocity: 



     
ˆ1

ˆ ( ) i t

k p

dR
i e

a dt

       ,    (1.23) 

where    i t

k e    ,  
i t

p i e    .    (1.24) 

In the mobile basis, it is 

      ˆ
k p i     .     (1.25) 

The kinetic tangential velocity is directed along the motion and the potential normal 

velocity – along the radius-vector of the circumference.  

The potential velocity is the centrifugal velocity of rest, which (under definite 

conditions) can be transformed into the centrifugal velocity of motion. 

The kinetic velocity characterizes both the quantitative side of motion and the qualitative 

side of rest, whereas the potential velocity – the quantitative side of rest and the qualitative 

side of motion. 

 

3. Accelerations 
 

The derivative of the potential-kinetic velocity determines the potential-kinetic 

acceleration: 

      
2ˆ ( )p k a ia    w w w n  ,    (1.26) 

where      
2

2

p a w
a


   w n n n     (1.27) 

is the potential centrifugal acceleration; 

      
a

iiwaik

2
2 

w     (1.28) 

is the kinetic non-centrifugal acceleration. 

The corresponding specific potential-kinetic accelerations have the form 

      2ˆ
ˆ ( )p k i

a
     

 w
n    ,   (1.29) 

where     
2

p   n ,   2ik .    (1.30) 

The scalar forms of the accelerations in the motionless and mobile bases are, 

correspondingly, equal to 

      2ˆ ˆw a  ,  2ˆ ˆ i tw ae  ,   (1.31) 

      2ˆ (1 )i    , 2ˆ (1 ) i tw i e   .   (1.32) 

The potential normal, or centrifugal, acceleration is directed along a radius-vector of the 

circumference and the kinetic tangential, or rotational, acceleration is directed along the 

motion.  



All types of the above-considered accelerations, which describe uniform circular motion, 

are the qualitative accelerations. They characterize the change of the field of motion-rest only 

along the direction. Besides, the relation of quantity and quality connects the potential and 

kinetic accelerations between themselves. 

 

 

II. The circular dynamic field of motion-rest 
 

1. The vector of potential-kinetic state in the circular motion 

Under the motion along a circle, the state vector Ŝ  (see (1.5)) has the form 

    kpkpyx mmmm SSrrlkrS  )ˆˆ(ˆˆ  ,   (2.1) 

where 

     nkrS maemam tj
pp        (2.2) 

is the vector of the potential state, 

     j t

k km mia e mia   S r l       (2.3) 

is the vector of the kinetic state.  

Their scalar forms in the fixed and mobile bases are, correspondingly: 

    tj
pp maemrS  ,  mamrS pp     (2.4) 

    j t

k kS mr miae   ,   
k kS mr mia  .   (2.5) 

 

2. The kinetic-potential momentum 
 

The kinetic-potential (or kinematic) momentum of a point on the circumference, 

according to the equation (3.5), is 

      nvP  immm  ˆˆ . 

This formula can be obtained also by the following way: 

    npp
SSS

P  imm
dt

d

dt

d

dt

d
pk

kp


ˆ
ˆ ,   (2.6) 

where 

         mma
dt

d p

k

S
p     (2.7) 

is the tangential kinetic momentum and 

    nnl
S

p   miamiemiaj
dt

d tjk
p      (2.8) 

is the normal (or centrifugal) potential momentum. 



Thus, the momenta of motion and rest represent the kinetic-potential momentum. These 

momenta are mutually perpendicular, which reflects the mutual orthogonality of fields of 

motion and rest. 

In the motionless and mobile bases, scalar forms of the momenta are 

    tj
pk eimmmm

dt

Adm
P  )(ˆ

ˆ
ˆ  ,   (2.9) 

      mimmP  ˆˆ .      (2.10) 

The potential-kinetic momentum (2.6) can be also expressed as 

    0
ˆˆ)(ˆ)(ˆˆ alklkvP qiaamjiaamejm tj       (2.11) 

or 

     l-kvP iaqaqm ˆˆˆˆ  ,      (2.12) 

where 

     tjmtmmem tj  sincosˆ      (2.13) 

is the longitudinal-transversal mass of the oscillator, defining the corresponding longitudinal-

transversal charge 

     tjqtqmej
dt

md
q tJ   sincos

ˆ
ˆ  .   (2.14) 

Thus, in the motionless basis, the kinetic-potential momentum (2.12) represents by itself 

the two polarized oscillatory waves of moments of charge, correspondingly, in the planes 

ZOX and ZOY: 

     l-kppPP iaqaqqkqpq
ˆˆˆˆˆˆ  ,    (2.15) 

where 

      kp aqqp
ˆˆ         (2.16) 

is the potential kinematic moment of charge, 

      l-p iaqqk
ˆˆ         (2.17) 

is the kinetic kinematic moment of charge. 

In the mobile basis, the kinetic momentum  

     ˆ( )k q km qa iq ia iq     p p a      (2.18) 

is the tangential moment of the kinetic charge mq   and the potential momentum 

     pqnp iqiqami anpnp ˆ      (2.19) 

is the radial moment of the potential charge miiq  . 

Their scalar forms in the motionless and mobile bases are as follows: 

   tj
q eiqaqaP )(ˆ  , tj

qp qaeP ˆ , tj
qk iqaeP ˆ  



    aqPqp
ˆˆ  ,  iaqPqk

ˆˆ  ,      (2.20) 

where q̂  is the potential-kinetic charge defined by the formula 

1( )
2

ˆ
ˆ ˆ

i tdm
q i m qe

dt

  
        (2.21). 

q=m is the modulus of the charge. 

 
3. The kinetic-potential charge 
 

The specific momentum defines the vector kinetic-potential charge: 

      nqq/PQ qiqa pk  ˆˆˆˆ .    (2.22) 

Its scalar form is: in the motionless basis 

       tjeiqqaPQ )(/ˆˆ      (2.23) 

and in the mobile basis 

        iqqq ˆ .      (2.24) 

The kinematic charge is related with the rotor-divergence of velocity and momentum: 

      
m

divrotrodiv
Q

vvv
ˆ

2ˆˆˆ  ,    (2.25) 

      QPPP ˆ2ˆˆˆ  divrotrodiv ;    (2.26) 

at that, 

      krot QP ˆ)ˆ(  , k
k

m
rot  ˆ2

ˆ
2ˆ

Q
v ,   (2.27) 

     prot QP ˆˆ  ,  p

p

m
rot  ˆ2

ˆ
2ˆ

Q
v ,   (2.28) 

where k̂  is the vector of mass density of the transversal kinetic charge and p̂ is the vector 

of density of the longitudinal potential charge. 

 
4. The basic parameters of kinematic exchange 

 

The rate (of the field) of change of momentum (or the power of exchange) describes the 

exchange of rest-motion 

    2 2
ˆ

ˆ ˆ ˆ ˆˆ
p k

d
m m a m ia I

dt
        

P
F w F F n a .   (2.29) 

The potential and kinetic powers of exchange are, correspondingly, equal to 

     
2

2ˆ ˆˆ
p p p

m
m m a I

a


    F w n n a ,   (2.30) 



     
2

2ˆ ˆˆ
k k k

m
m m ia i I

a


    F w a  ,   (2.31) 

and  qmkI  2  is the amplitude of the kinematic current. 

The scalar form of the power of exchange in the mobile basis is 

     2 2ˆ ˆ ˆˆ ˆ
p kF mw F F m a m ia Ia        .   (2.32) 

The specific power of exchange of momentum a/FI ˆˆ   is the kinematic current 

   2 2
ˆ ˆˆ ˆ ˆ ( )p k

d dq
m m i I i

adt dt
          

P
I I I n n  ,   (2.33) 

where 

       ˆ
p II n       (2.34) 

is the potential (or centripetal) current, and 

        iIkÎ       (2.35) 

is the kinetic (tangential) current. 

The scalar form of the kinetic current in the mobile basis is 

      2 2ˆ ˆ ˆ
p kI I I m m i I iI        .   (2.36) 

The rate of exchange of momentum is perceived physiologically, at the level of 

sensations, as “force”. This word is very unsuccessful. We should leave it for sport and 

physiology, but in physics, it is necessary to use a different term. We call the rate of exchange 

of momentum the “kinema”.  

The rotor-divergence of kinema defines the kinematic current: 

      IFFF ˆ2ˆˆˆ  divrotrodiv .    (2.37) 

According to the definition, there is the following correlation between the kinema and 

current 

       IF ˆˆ a .      (2.38) 

In its turn, the kinema, as the state of motion-rest, demands operating by the rate of its 

change, which we will call the vector of mobility or mobilite (from the Latin, mobilitas = 

mobility) D̂ : 

     
ˆ ˆ

ˆ ˆ ˆ ˆ( )k p

d d
a I i k

dt dt
       

F I
D D D τ n v .   (2.39) 

Thus,  

      ˆ ˆ ˆ ˆ
p k k  D D D v ,     (2.40) 

where 

    ˆ
p iI D n   and  ˆ

k I D  .    (2.41) 



5. The moments of momentum and of kinema 
 

The following potential-kinetic moments, by the definition, are related with the 

momentum and kinema: 

    2ˆ ˆ ˆ ˆ ˆ ˆ
k pa ma J J J i        L P L L n  ,   (2.42) 

    kpkp JJJa  ˆˆˆˆˆ MMFM ,    (2.43) 

where 

      2ˆ
p pJ J  M n      (2.44) 

is the centripetal potential moment and 

       iJJ kk
2ˆ M      (2.45) 

is the tangential kinetic moment. 

A scalar ratio of the moment of kinematic charge 

     nqqQP iqaqaaa pk  )ˆˆ(ˆˆ     (2.46) 

to the moment of momentum 

     aimam )(ˆˆ nτvL         (2.47) 

has the form 

    
 m

q

iam

iqa

mam

a







)(

(

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

n

n)

v

Q

v

Q

L

P
.    (2.48) 

 
6. The energetic measures of circular motion-rest 

 

The circular motion-rest has a many-sided character. It is described by a series of 

energetic measures. The first energetic scalar measure of motion-rest along a circumference 

of a material point is defined by the following integral 

    
2 2ˆˆˆ ˆ ˆ ˆˆ ˆ ˆ

2 2

ka m
E Fda m d Iada


              (2.49) 

The second energetic measure of the motion-rest on the basis of vector measures, is 

    
2 2ˆ ˆˆ ˆ ˆ ˆ ˆˆ ˆ

2 2

k m
E d m d I d        

a v
F a v v a a ,   

or 

  
2

)2/cos(2

2

)(

22

cos2

22
ˆ

2222  pkpkpk
mimmmmm

E
vvvvvv

 , 

and 



    0
2222

ˆ
2222






























pk

pk mmmm
E
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or 

   

2 22 2

0
2 2 2 2

p pk k
m pm p

E
m m


     , 0

2 2

pk
i

E


   , (2.50) 

where am kk   is the kinetic moment of momentum and ami pk   is the potential 

moment of momentum. 

Thus, under the motion along a circumference (as in particular it takes place with the 

electron in H-atom), the potential-kinetic vector energy of a material point is equal to zero. 

By virtue of this, the circular motion is the optimal (equilibrium) state of the field of rest-

motion, where “attraction” and “repulsion” are mutually balanced, which, in turn, provide 

for the steadiness of orbital motion in the micro- and macroworld. 

The quantitative equality of “attraction” and “repulsion” is accompanied, simultaneously, 

by the qualitative inequality of the directions of fields of rest and motion, which generates the 

eternal circular wave motion. In order to break such a motion, it is necessary to destroy this 

system entirely. However, in this case, a vast number of new circular wave motions of more 

disperse levels will appear as a result. 

The third energetic measure of motion-rest is defined on the basis of the fact that the 

motion along a circumference is the sum of two potential-kinetic oscillations.  

Therefore, the total scalar measure of energy of motion-rest along a circumference is 

equal to the sum of potential-kinetic energies, Ex and Ey, of such oscillations: 
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are, accordingly, the total kinetic and potential energies of a material point in a circular 

motion. 

As follows from the formulae (2.52), the total kinetic and potential energies are equal. 

Every energetic measure, of the above-presented energetic measures, expresses the 

definite side of a many-sided process of motion-rest. If a radius of a circumference moves 



towards infinity, then any part of this circumference can be regarded as a part of the 

rectilinear motion-rest with the total energy 

      2mEEE pk  ,     (2.53) 

where 

      
2
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