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The wave behavior of the hydrogen atom, as the paired proton-electron system, shows itself in 
vibrations of the center of mass and an atomic spherical shell. These vibrations superimpose on 
electron’s motion resulted in the magnetic moment anomaly of the electron and in an appearance of 
the background spectrum which defines, as turned out, Lamb “shifts” of optical spectral lines. The 
anomalous magnetic moment of the electron is relatively simple calculated on the basis of the 
approach, which takes into account an influence of the inherent vibrations. The value obtained 
coincides quite precisely with the experimental data, like in the case of Lamb shifts. Thus, with 
allowance for the wave behavior of a proton and an electron, we arrive not only at the simple 
description of the anomalous magnetic moment, but also at the discoveries of the background 
spectrum of the hydrogen atom and the Lamb shifts nature.  
 

PACS numbers: 03.40.Kf, 03.65.Ge, 11.90.+t, 12.90.+b, 32.30.-r 
 

In full agreement with the wave-particle duality, we can consider the hydrogen atom as a 
wave dynamic formation, namely as the simplest paired centrally symmetric proton-electron 
wave system. According to the Dynamic Model (DM) [1], which takes into account the wave 
behavior of particles, a proton, just like an electron or any elementary particle, is a pulsing 
physical point of space of the spherical structure which is in a state of continuous exchange 
(interaction) with environment, over the wave spherical shell, at the definite fundamental 
frequency of pulsations, ωe. Such particles, being, according to the definition, unceasingly 
pulsing microobjects, possess internal energy. The value of the latter ( 2

00 cmE = ) is defined 
by the associated mass of a particle m0 and the fundamental wave speed c of extension of the 
pulsations  in the surrounding space. 

Longitudinal oscillations of the spherical wave shell of the proton, at the fundamental 
frequency ωe, provide an interaction in radial direction (more correctly exchange of matter-
space and motion-rest) with the surrounding field-space and with the orbiting electron. The 
orbital motion of the electron is associated with the transversal cylindrical wave field. 
Therefore, the common three-dimensional wave equation  
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is valid for both cases. Both dynamic constituents of the proton-electron system have to be 
described, respectively, by spherical and cylindrical wave functions [2] that has been realized 
in the DM. 

With the regard for wave processes, the nature of the so-called “anomaly” of the 
magnetic moment of the electron is explained logically non-contradictory and simple [3]. Let 
us show this. We will use definitions and parameters characteristic for, and originated from, 
the DM.  

The wave motion of the hydrogen atom, as a paired proton-electron system, generates in 
the simplest case (in equilibrium) an elementary electric (longitudinal) moment and the 
corresponding magnetic (transversal) moment. The latter is 
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where the term 0rδ  takes into account all small deviations of the orbital radius r0 caused by 
different constituents of specific wave motion of the electron in the intra-atomic wave field; e 
is the electron’s exchange (“electric”) charge, 0υ  is the oscillatory speed of boundary wave 
shell of the hydrogen atom equal to the Bohr speed, c is the base wave (phase) speed of the 
wave exchange (equal to the speed of light). 

The term 0rδ  takes into account all additional motions (caused by vibrations) that perturb 
(modulate) trajectory of the orbiting electron, namely: (1) the circular motion of the center of 
masses of the hydrogen atom, because the hydrogen atom, as a whole, oscillates in the 
spherical field of exchange with the amplitude (characteristic for the wave sphere, at 1=kr , 
where k is the wave number) defined by the fundamental wave radius eD ; (2) oscillations of 
the wave shell together with the orbiting electron and oscillations of the center of mass of the 
hydrogen atom with the amplitude defined by the Bohr radius 0r  and the first root of the 
spherical Bessel functions of the zero order 1,0,0 bz s ′=  [4] (responding to the extremum of the 
first kinetic shell [2]); (3) oscillations of the center of mass of the electron itself, as a whole, 
with respect to the center of mass of the hydrogen atom, defined by the radius of the wave 
shell of the electron re and the roots of Bessel functions responding to zero and maximum of 
the first kinetic shell, 1,0y  and 1,0'y . 

The total magnetic moment of the electron )(theµ  in an expanded form, followed from 
the DM, is defined by the equation  
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where eee rmh 02 υπ=  is the proper action of the electron (analogous to the Planck action h), 
me is the electron mass. The coefficient 00155.1=β  takes into account the natural 
indeterminacy in weight contributions of two items defined by the two roots of Bessel 
functions, 1,0y  and 1,0'y .  The substitution of numerical values for all quantities entered in (3) 
gives the following theoretical values for the total magnetic moment of the electron and its 
constituents: 
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This magnitude corresponds to Einstein-de-Haas’s experimental magnitude, almost 
coinciding with the latter. The first, major, term in (3) relates to the expected value of the 
orbital magnetic moment of the electron bound in the hydrogen atom if one supposes that 
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A half of this value is called the Bohr magneton: 
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The latter was introduced in physics due to the erroneous theoretical derivation, that is 
convincingly shown in [5], of the average value of circular current generated by the orbiting 
electron. This is why an agreement of Einstein-de-Haas’s experimental data with the 
erroneously derived value eµ  did not happen (two times difference of experimental and 
theoretical magnitudes took place).  
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The second and third terms take into account an influence of the aforementioned natural 
perturbation of the orbital motion of the electron. The only fourth term in (3) has the direct 
relation to the electron proper (“spin”) magnetic moment, its value (see (4)) is 

1291050792.5 −− ⋅⋅=µ TJs .    (7) 
If one subtracts one Bohr magneton µB (6) (ascribed erroneously, as was mentioned 

above, to the electron’s spin magnetic moment) from (4), we obtain the absolute value 
12610476412.928)( −− ⋅⋅=µ−µ=µ TJth Bee ,   (8) 

which precisely coincides with the absolute “2002 CODATA recommended value” accepted 
for the magnet moment of the electron (within uncertainty in the last two figures): 

126
, 10)80(476412.928 −− ⋅⋅=µ TJCODATAe .   (9) 

The magnetic moment of an electron is defined in modern physics by quantum 
electrodynamics (QED) from the equality 

Bee a µ+=µ )1( ,     (10) 
where ae is called the magnetic moment anomaly of the electron. The latter shows the 
exceeding of the expected value of the magnetic moment of the electron in one Bohr 
magneton (6), following from semi-classical field theories. 

The whole extended form of the equation on the “anomaly” ae(th), including functional 
expressions for factors of the nα terms, takes many pages. Therefore, we show here only the 
concise form of the equation derived now [6] up to the forth order in the fine-structure 
constant [7] α: 
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112
0 10...854187817.8 −− ⋅⋅=ε mF  is the electric constant. The derivation of ae with such a 

high precision is regarded as one of the advantages of QED. 
Let us compare now two presented expressions, (3) and (10), which describe the same 

quantity – the magnetic moment of the electron. By this way we can compare two theoretical 
approaches: (1) new one presented here, which takes into account the wave side of nature and 
can be called therefore quantum-wave; and (2) quantum (QED).  

The derivation by QED (with participation of quantum chromodynamics) of Eq. (10) rests 
on the concept of virtual particles. The expanded form of the equation is extremely 
complicated. Actually, the coefficient )384(8509.1  of the 4α  term (calculated with big 
uncertainty, 384± ) consists of more than one hundred huge 10-dimensional integrals. 
Therefore, because of the complicated mathematical structure of coefficients of the nα  terms, 
a special system of massively-parallel computers was developed to calculate (10) [6]. 

Eq. (3), derived on the basis of the quantum-wave approach (realized in the DM [1]), 
does not contain any integrals, but nevertheless logically and non-contradictory gives the 
same precise value of µe.  

Let us turn now to the next two important results originated from the new approach. 
First, the solution of the wave equation (1) leads also to the spectral formula of the hydrogen 
atom in an unknown earlier form, where quantum numbers, defining discrete (linear) structure 



http://shpenkov.janmax.com/CommonPhen.pdf 4

of the optical spectrum, are roots jiz ,  of Bessel functions )(krJ  and )(krY , i.e., right radial 
solutions of the wave equation (1) [2, 6]:  
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A is the constant equal to the oscillation amplitude at the sphere of the wave radius ( 1=kr ), 
m0 and r0 are mass and radius of the proton. 

Second, the natural perturbation of the orbital radius r0 in the equilibrium state is 
responsible for the origin of radiation at the level of background. The orbiting electron in 
hydrogen (both in equilibrium and exited states) constantly exchanges the energy with the 
proton at the fundamental frequency ωe inherent in the subatomic level. This exchange 
process between the electron and proton has the dynamically equilibrium character and runs 
on the background of the superimposed oscillatory field of the center of mass of the proton 
and its spherical shell. 

On the basis of (13), with allowance for the formula on the relative value of the 
background perturbation 0/ rrn δ=δ  [8, 9] and taking into account the Bessel’s functions of 
the zero order, at 0=== mqp , characteristic for the proton-electron system in an 
equilibrium state, we arrive at the spectrum of the zero wave perturbation, the background 
spectrum: 
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where 2,1=n ; nβ  (β1=1.203068949, β2=1.018671584) are numerical factors taking into 
account the fact an excitation of the hydrogen atom on the zero level and using by this reason 
the first unequal to zero roots of Bessel functions, 2,0j′  and 3,0j′ , corresponding to the 
extremes of the first potential radial shells [2]; R is the Rydberg constant; 

cmre
101017052597.4 −⋅=  is the radius of the wave shell of the electron determined in the 

DM from the formula of mass of elementary particles [1]. 
The results of calculations by the formula (15) are presented in Tables 1 and 2.  

 
Table 1. The terms, 1/λ, of background spectrum (15) of the hydrogen atom;  n = 1. 
 

        

s Zp,s      Zm,n βn 1/λ, cm-1 (15) λ, cm T, K Texp,, K [10] 
        

1 y0,1  y'0,1  41.751724 0.023951 12.10805 
 

 
        

2 y0,2  
   j'0,2  

y'0,1 
   j'1/2,1 

 
β1 

9.40602023 
 9.67863723 

0.106315 
  0.103320 

2.72774 
  2.80680 
 

2.728 ± 0.002 

        

3 y0,3  
   j'0,3  

y'0,1 
   j'1/2,1 

 
β1 

5.240486 
  5.255841 

0.190822 
  0.190265 

1.51974 
  1.52419 
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Tablica 2. The terms, 1/λ, of background spectrum (15) of the hydrogen atom;  n = 2 
  

       

s Zp,s      Zm,n βn 1/λ, cm-1 (15) λ, cm T, K 
       

1 y0,1  y'0,1  5.219748 0.191580 1.5137 
 

       

2 y0,2  
   j'0,2  

y'0,1 
   j'1/2,1 

 
β2 

1.1758681 
   1.211154 

0.850436 
   0.825659 

0.3410 
0.3512 
 

       

3 y0,3  
   j'0,3  

y'0,1 
   j'1/2,1 

 
β2 

0.6550701 
   0.6582849 

1.526554 
   1.519099 

0.18997 
  0.1909 

       

 
The zero level of wave exchange (interaction with environment) is integrally 

characterized by the absolute temperature of zero exchange and exists as a standard energetic 
medium in the Universe, where hydrogen is the most abundant substance. Actually, the wave 

cm106315.0=λ  (see Table 1) is within an extremum of the spectral density of equilibrium 
cosmic microwave background. The absolute temperature of zero level radiation with this 
wavelength, which has the black-body form [8], is KT 72774.2= . The form of the spectrum 
of this radiation and its anisotropy was measured by NASA's COBE satellite 
(Texp.= K002.0728.2 ±  [10]). In 2006 the Nobel Prize was awarded for this work.  

An important proof of the correctness of the background radiation formula (15) and, 
hence, basic features of elementary particles structure, described by the DM, are values of 
differences of basic energetic terms corresponding to Bessel functions 2,0j′  and 2,0y .  

It turned out that the theoretical values obtained for the (j'0,2 - y0,2)n =1 (Table 1) and (j'0,2 - 
y0,2)n =2 (Table 2) terms differences, ( ) 1/1 −λ∆ cm  [11], coincide with high precision with the 
most accurate experimental values obtained for the 1S and 2S Lamb shifts of the hydrogen 
atom: )22(837.8172,1 =sL  MHz and )29(8446.105722 =− psL  MHz [12] (Table 3).  
 
Table 3. The frequency gaps, ∆ν, between the nearest background terms in the hydrogen atom 
 

      

n s Terms differences  ∆(1/λ), cm-1  ∆ν, MHz ∆νexp, MHz [12] 
      

1 2 (j'0,2 - y0,2)n =1 0.272617 8172.852 8172.837(22) 
 3 (j'0,3 - y0,3)n =1 0.015355 460.3313 

 

 
      

2 2 (j'0,2 - y0,2)n =2 0.0352859 1057.84466 1057.8446(29) 
 3 (j'0,3 - y0,3)n =2 0.0032148 96.37727  

 
The latter indicates at the natural bond of the Lamb shift with the background spectrum, 
revealing thus the nature of the “shift” and additionally confirming the correctness of the 
derived spectrum. 
 
Conclusion 

 
With allowance for the wave behavior of a proton and an electron, we have arrived at the 

simple, and precise, description of the anomalous magnetic moment of the electron, and also 
at the discoveries of the background spectrum of the hydrogen atom and the Lamb shifts 
nature.  

Thus, on the basis of the results obtained, we have the right to state that all above 
phenomena have the same nature of origin conditioned by the peculiarity of the resulting 
oscillatory-wave motion of the electron. The latter is responsible for the existence of 
microwave background radiation in the Universe of the pick temperature 2.728 K which we 
can regard as the zero point energy. 
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