
Тёмная материя

Часть 1

Субэлектронные частицы

Георгий П. Шпеньков

g.shpenkov@gmail.com

http://shpenkov.com/pdf/DarkMatter-1.pdf

Содержание

Предисловие

- 1. Введение
- 2. Характеристические параметры волновых процессов
- 3. Полевая масса и квант массы излучения
- 4. Массы нейтрино и светоносных фотонов
- 5. Спектр масс элементарных частиц и полевых масс фотонов
- 6. Заключение

Ссылки

Предисловие

Фундаментальная **проблема** астрофизики – **природа тёмной материи**, или тёмного вещества, во Вселенной.

Эта проблема рассматривается нами с позиций **Волновой Модели** (ВМ) диалектической физики [1] (в 2-х видео).

В данном (1-м) видео содержатся базовые положения ВМ (опубликованные ранее в [2]), согласно которым наиболее вероятными из предполагаемых основных составляющих так называемой «небарионной» части тёмной материи во Вселенной по нашему мнению являются субэлектронные частицы, к которым, мы относим и нейтрино, судя по величине обнаруженной у них массы.

Абсолютную массу нейтрино (легчайших из всех известных физикам элементарных частиц) определить **прямым** экспериментом **невозможно**.

Поэтому **наличие массы** у нейтрино **оценивают** различными методами, в частности, **обрабатывая** математически **данные** экспериментов по β-**распаду трития**.

В рамках Международного эксперимента «The Karlsruhe Tritium Neutrino Experiment» (KATRIN Collaboration), объединяющий всемирный опыт в изучении β-распада трития, с июня 2018 года началась фаза долгосрочного набора данных на уникальной установке (с беспрецедентной чувствительностью 0,2 эВ/с²), созданной для измерения массы электронных нейтрино.

Кроме **электронных**, различают ещё **два типа нейтрино** — **мю** и **тау**.

Мы **опирались** при анализе на **оценочные значения масс нейтрино**, которые к **настоящему времени** были получены физиками.

Субэлектронные частицы (к которым мы относим и нейтрино) принадлежат уровню Вселенной **ниже электронного**, они заполняют всё **космическое пространство**.

Эти частицы проходят свободно через вещественные образования.

Беспрепятственно проходят сквозь **водородные атомы** (к ним мы относим **протоны**, **нейтроны** и **протиум**). Так что обычные **тела**, состоящие из атомов, **прозрачны** для субэлектронных частиц.

Концентрация субэлектронных частиц, **включая нейтрино**, во Вселенной, как **следует** из полученных нами **данных** [2, 3], достаточно **высока**, поэтому она существенно **влияет** на среднюю **плотность** вещества во Вселенной.

Согласно ВМ субэлектронными частицами осуществляется **перенос энергии** электромагнитного **излучения** широкого диапазона длин **волн**, в том числе диапазона **световых** волн, подобно тому как это происходит при **переносе энергии** любых иных материальных **волн** разных частот, например, **звуковых** в воздухе.

Согласно современной физике, электромагнитное излучение (ЭИ) трактуют как состоящее из потока **фотонов**, квантов ЭИ.

В соответствие с принятым в физике определением **Фотон является** устойчивой нейтральной **элементарной частицей** со спином 1, двигающейся со **скоростью света**».

В действительности, фотон — не есть частица, в истинном значении этого слова, поскольку не имеет ни массы покоя, ни размеров, и его внутренняя энергия (энергия покоя) равна нулю, E_0 = mc^2 =o.

То есть, фотон не обладает параметрами, характерными для частиц. Представляет собой мифическое абстрактноматематическое НЕЧТО, с помощью которого физики-теоретики стали описывать явления взаимодействия света с веществом.

Поскольку энергии, переносимые потоками квантов ЭИ (трактуемых как потоки мифических частиц - фотонов), согласно ВМ переносятся локальными возбуждёнными областями пространства субэлектронных частиц, то, не придумывая нового, можно называть эти возбуждённые состояния условно "фотонами".

Спектр эквивалентных масс "частиц-фотонов", определяемый энергией кванта ЭИ, E=hv, по формуле $m_{ph}=hv/c^2$, совпадает, как следует из проведенного нами анализа, со спектром масс, обнаруженным у нейтрино.

Во 2-м видео содержатся аргументы ВМ (опубликованные в [3]), из которых следует, что субэлектронные частицы действительно являются наиболее вероятными из предполагаемых основных составляющих «небарионной» части тёмной материи во Вселенной.

1. Введение

Согласно Ейнштейну электромагнитные волны (ЭВ) представляют собой поток квантов чистой энергии в виде безмассовых частиц, движущихся со скоростью света "с" (названы в 1923 г. Комптоном фотонами).

Как могла появиться на свет такая **мистическая** концепция **безмассовых** частиц?

Введя впервые в 1905 году понятие малых порций («зёрен») энергии ("lightquanten"), двигающихся в пустом пространстве со скоростью света "с" [4], Эйнштейн был вынужден принять их массу покоя торавной нулю. В противном случае их релятивистская масса токажется равной бесконечности в соответствии с уравнением

$$m = \frac{m_0}{\sqrt{1 - v^2 / c^2}} \tag{1}$$

Понимая, что **это** безусловно **недопустимо**, он и приписал своим «зёрнам» энергии **нулевую массу** покоя.

Релятивистское соотношение (Лоренц-Фитцджеральд **сокращение**) для **длин** объектов, движущихся вдоль оси x со скоростью v, имеет вид: $\Delta x = \Delta x_o \sqrt{1 - v^2 / c^2}$ (2)

Эйнштейн интерпретировал длину Δx_0 , как **длину** в состоянии **покоя**, а длину Δx – как **длину** в состоянии **движения**. Поэтому, длина объекта движущегося со скоростью света "с" в направлении движения должна быть **равна нулю**.

В результате такой интерпретации фотон трансформировался в фиговый листок нулевой толщины, который к тому же движется в якобы пустом пространстве и имеет волновые свойства, напоминая, в определённом смысле, энергетическую змею-синусоиду.

Не согласующееся со здравым смыслом допущение Эйнштейна, как мы видим, **было принято** в физике. **Почему**?

Итак, **кванты** энергии, фотоны, **не имеют** пространственного **размера** и, будучи **безформенными** и **безмассовыми**, являются попросту **абстрактно-математическими** точками.

Такая модель переноса энергии ЭИ глубоко наивна и спекулятивна.

Очевидно, концепция мистических фотонов с необычными свойствами, безсмысленными для реальных сущностей, есть результат игнорирования здравого смысла ради подгонки данной концепции к теории относительности.

Как было отмечено в предыдущем видео [5], посвящённом формуле $E_0 = mc^2$, волновое движение представляет собой массовый (коллективный) процесс переноса возбуждения и имеет бинарный характер. Это означает, что волновой процесс любого подпространства Вселенной протекает одновременно на двух уровнях: уровне базиса и уровне надстройки.

Источном световых электромагнитных **волн** являются **возбуждённые** атомы. Их электроны в **переходном** внутриатомном процессе **возмущают** в окружающем **пространстве** огромное множество **частиц субэлектронного** уровня.

Данные частицы **не имеют ничего общего** с математическими точками — фотонами — **нулевой массы покоя**, m=0 и, соответственно, **нулевой энергией покоя**, $mc^2=0$.

Это **огромный мир частиц**, которые принадлежат уровню, лежащему **ниже электронного**. Для них Земля в высшей степени является «разреженным» сферическим пространством.

Субэлектронные частицы **пронизывают** Землю также **свободно**, как и астероиды пронизывают пространство солнечной системы и галактик.

Именно **их** направленное движение, **потоки**, называемые **«магнитным полем»**, как следует из ВМ, окружают проводник с током, магниты, нашу Землю и заполняют **межпланетные**, **межзвездные** и **межгалактические** пространства.

Это цилиндрическое поле-пространство субэлектронного уровня.

В соответствии с **Динамической Моделью** (ДМ) элементарные **частицы** являются **волновыми пульсирующими** образованиями [6].

Их масса имеет присоединённый характер и является мерой обмена материей-пространством, находящимися в постоянном движении, определяемом временем (для краткости, можно говорить, является мерой обмена материей-пространством-временем).

Поэтому та масса, которую принято считать в физике массой покоя, т, элементарных частиц является, в соответствии с ДМ, присоединённой (динамической) массой [1, 6].

Так что **для любых** материальных микрообъектов (частиц) **справедливы** неравенства:

$$m \neq 0$$
 u $mc^2 \neq 0$

Интенсивность массообмена определяет обменный («электрический») заряд $q=m\omega_e$. Его размерность $g\times s^{-1}$. ω_e — фундаментальная частота атомного и субатомного уровней, $\omega_e=1.869162505\times 10^{18}~s^{-1}$.

Богатому **спектру частиц субэлектронного уровня** по нашему мнению принадлежат **нейтрино** различных видов.

Их масса крайне мала. По экспериментальным оценкам она **не превышает** (в единицах энергии) 0.25 эВ.

Для сравнения, **масса электрона** равна 0.511×10^6 эВ.

Проведенный нами **анализ** [1] **показал**, что **есть** все **основания отождествлять** с субэлектронными частицами **нейтрино**, которые имеют **присоединённую массу** $m_{_{V}}$, на много меньшую, чем масса электрона, $m_{_{V}} << m_{_{o}}$.

Субэлектронные **частицы**, как было выше отмечено, **заполняют космическое пространство** и являются, по всей вероятности, той **материальной средой**, в которой **благодаря волновому** процессу осуществляется **перенос энергии** электромагнитного излучения широкого диапазона длин волн.

Начнём рассмотрение проблемы тёмной материи с описания особенностей волнового процесса переноса возбуждений субэлектронными частицами.

Для этого вспомним основные параметры волнового движения, приведенные в предыдущем видео [5], а также представим дополнительные параметры, введённые нами при описании сути гипотезы ВМ, касающейся природы тёмной материи во Вселенной.

2. Характеристические параметры волновых процессов

Важными **параметрами** волновых процессов является **масса** т колеблющихся частиц, участвующих в волновом движении (в транспорте энергии, переносимой волной), их **колебательная скорость** v (локальная скорость — скорость **надстройки** волны), а также **длина волны** λ , представляющая **коллективный** параметр (надстройки) волнового движения.

Указанные **параметры неразрывны**, поэтому естественным является введение **динамических** параметров **надстройки**, таких как **импульс** p=mv, **волновое действие** $h=mv\lambda$ и **волновое число надстройки** $k=2\pi/\lambda=2\pi$ p/h.

Данные параметры рассматривались нами в **предыдущем** видео, **посвящённом формуле** E_0 = mc^2 [5].

Там же приведено соотношение $\lambda = cT$, отражающее неразрывную **связь длины волны** λ с **временным периодом-квантом** T и **скоростью** "c" волнового процесса на уровне базиса.

B [5] были приведены также выражения для колебательной энергии E_v (на уровне надстройки волны) и волновой энергии на уровне базиса волны E_c (энергии переноса), а также плотности этих энергий: $w_v = \varepsilon_0 \varepsilon v^2$ и $w_c = \varepsilon_0 \varepsilon c^2$, где $\varepsilon_0 \varepsilon = \rho$ есть плотность среды ($\varepsilon_0 = 1 g \times cm^{-3}$ – абсолютная единица плотности, ε – относительная плотность).

Другими важными **параметрами**, не приведенными в [5], являются следующие:

Колебательно-волновая энергия E_{v-c} и E_{c-v} (на уровне **базиса- надстройки**):

$$E_{v-c} = \int \frac{dm}{dt} v dl = \int \frac{dm}{dt} v c dt = \int v c dm, \quad \Delta E_{v-c} = \Delta m v c$$
 (3)

$$E_{c-\upsilon} = \int \frac{dm}{dt} c dt = \int \frac{dm}{dt} c \upsilon dt = \int c \upsilon dm, \quad \Delta E_{c-\upsilon} = \Delta m c \upsilon$$
 (4)

Данные энергии отличаются качественно, но количественно равны. Масса Δm есть **масса группы** частиц (**кластера**), учавствующих в волновом движении. **Плотность колебательно-волновой** энергии равна

$$w_{v-c} = \rho v c \tag{5}$$

Колебательная скорость *v* частиц, вовлечённых в волновой процесс переноса энергии возмущения, **налагается на скорость** непрерывного **хаотического** движения и **дрейфа** частиц в пространстве.

Соотношение между скоростями базиса и надстройки, т. е., между колебательной и волновой скоростями, v и с, имеет фундаментальное значение.

Максимальное отношение скоростей, названное в физике постоянной тонкой структуры, альфа, и введённое в ряд фундаментальных постоянных физики, имеет следующую величину:

$$\alpha = \frac{v_0}{c} = 7.297352568(24) \times 10^{-3} \approx \frac{1}{137}$$
 (6)

 $\alpha = \frac{\upsilon_0}{c} = 7.297352568(24) \times 10^{-3} \approx \frac{1}{137}$ (6) где $\upsilon_0 = 2.187691263 \times 10^8~cm \times s^{-1}~ecmь~скорость~электрона на первой$ Боровской орбите.

Данная интерпретация постоянной альфа менее известна для большинства, поскольку в квантовой механике понятие траектории (орбитально движения электрона) отсутствует. В соответствии с официально принятым в квантовой физике определением, постоянная альфа есть безразмерная величина, образованная из четырёх базовых физических постоянных $e, \hbar, c, u \in \mathbb{E}_0$:

$$\alpha = e^2 / 4\pi \varepsilon_0 \hbar c \tag{7}$$

и рассматривается как «**константа связи**» или как **мера** силы взаимодействия между электрическими зарядами и фотонами.

Анализ равенства (7), как оно связано с (6), во всех подробностях приведен в [7]. Там же раскрывается физический смысл постоянной альфа, которая, в противоположность выше приведённому определению, отражает лишь масштабную корреляцию базиса и надстройки волновых полей-пространств объектов во Вселенной, т. е., сопряжённых колебательно-волновых процессов на различных уровнях Вселенной.

В частности, постоянная альфа указывает на максимально возможную колебательную скорость в динамической системе из двух частиц (атоме водорода) в равновесном состоянии – более лёгкой частицы надстройки, электрона, по отношению к базисной скорости его взаимодействия (связи) с существенно более тяжёлой частицей – протоном,

$$v_{\text{max}} = \alpha c \tag{8}$$

Мы все **состоим** из элементарных **частиц**, так что характеристические **параметры микромира** должны быть **связаны** с таковыми и для **макромира**, в частности для **живых существ**. И действительно, в работах [1, 7] сообщается об **обнаруженном** нами **впервые** следующем **факте**.

Оказалось, что постоянная Планка (h) а также фундаментальная постоянная альфа (α) характеризуют такие экстремальные параметры человека, как порог слышимости (h) и порог боли (α).

3. Полевая масса и квант массы излучения

Предположим, что **то же** значение **отношения** α (6) для обоих скоростей, **колебательной** и **волновой**, справедливо и для огромного мира частиц **субэлектронного** уровня, заполняющих **межзвёздные** и **межгалактические** пространства.

Субэлектронные частицы, как уже было отмечено, являются, согласно ВМ, составляющими среды, в которой осуществляется волновой процесс переноса энергии электромагнитного излучения (включая излучение в видимом, световом, диапазоне частот).

В соответствии с равенством $v_{\max} = \alpha c$ (8), максимальная плотность колебательно-волновой энергии $w_{v-c,\max} = \rho v_{\max} c$ (5) частиц субэлектронного уровня, может быть представлена в следующем виде: $w_{v-c,\max} = \rho \alpha c^2$ (9)

где р есть **плотность пространства**, состоящего из частиц данного уровня. Отметим в этой связи, что **пространство**, состоящее из **субэлектронных частиц**, есть одно из **бесконечного множества** пространств Вселенной, **вложенных** друг в друга [1].

Энергия квантов электромагнитного излучения, переносимых в пространстве частицами субэлектронного уровня Вселенной, зависит от частоты излучения v и определяется формулой E=hv, где $h=m_e v_0 2\pi r_0 = 6.6260693(11) \times 10^{-27} \ erg \times s$ есть постоянная Планка (m_e- масса электрона, v_o и r_o- Боровские скорость и радиус, соответственно).

Очевидно, для переноса того же количества энергии с той же частотой частицами, ведущими себя подобно частицам идеального газа, Планковское действие h должно быть равно колебательноволновому действию частиц h_{v-c} , $h=h_{v-c}$, которое определяется следующим равенством :

$$h_{v-c} = m_{\lambda} v \lambda \tag{10}$$

Учитывая равенство $w_{v-c} = \rho vc$ (5) и что $\lambda = c/v$, колебательноволновое действие h_{v-c} (10) может быть представлено также в виде:

$$h_{v-c} = \frac{m_{\lambda} w_{v-c}}{\rho v} \tag{11}$$

B данных выражениях m_{λ} есть **полевая масса**, связанная с волной λ . Эта масса **отличается** от массы m, входящей в формулу **внутренней** динамической **энергии частиц** E_0 = mc^2 .

 U_3 (11) следует, что **полевая масса** m_{λ} варьируется в пределах значений

$$m_{\lambda} = \frac{h_{v-c}\rho v}{w_{v-c}} = \frac{hv}{vc}$$
 (12)

определяемых **частотным диапазоном** v электромагнитного спектра волн. Очевидно, **в случае**, когда $v/c=\alpha$,

$$m_{\lambda} \approx 137 \frac{hv}{c^2} \tag{13}$$

Это означает, что **полевая масса** m_{λ} , связанная с волной λ , примерно в 137 раз **больше массы** т одной **частицы**, чья внутренняя динамическая энергия на субэлектронном уровне равна mc^2 .

Естественно, энергию, переносимую квантом колебательновой энергии, $h_{\nu-c} \mathbf{v} = m_{\lambda} \mathbf{v} c \,, \tag{14}$

можно сравнивать с энергией частицы mc^2 (как это имеет место для энергии **«частиц-фотонов»**, $hv = m_{ph}c^2$, при оценке **эквивалентной массы фотонов**, $m_{ph} = hv/c^2$).

Так что в случае (13) (где $\upsilon/c = \alpha$) полевая масса m_{λ} эквивалентна массе 137 частиц массой $m = h \upsilon/c^2$ каждая,

$$m_{\lambda} \approx 137m$$
 (15)

К равенству (15) можно придти другим путём:

B **волновых** процессах имеет место **изменение** Δl **протяжённости** волнового **элемента пространства** l (вдоль волны-луча).

Одновременно происходит **изменение** Δm_{λ} **полевой массы** m_{λ} , связанной с элементом пространства l. Следующее соотношение выражает эту закономерность:

 $\frac{\Delta l}{l} = \frac{\Delta m_{\lambda}}{m_{\lambda}} \tag{16}$

 $\Delta l - есть локальная протяжённость, обусловленная колебаниями группы частиц со скоростью <math>v$; поэтому $\Delta l = v\Delta t$. Элемент l пространства определяется как $l = c\Delta t$. Отсюда, мы имеем

$$\frac{\Delta m_{\lambda}}{m_{\lambda}} = \frac{\Delta l}{l} = \frac{\upsilon}{c} = \frac{\omega a}{c} = ka \tag{17}$$

где а – амплитуда аксиального смещения.

Следовательно, **аксиальный элемент массы** Δm_{λ} , скажем элемент **«уплотнённого»** пространства (обозначим его как m_{ax}), **вдоль базиса волны-луча**, может быть представлен следующим образом:

$$m_{ax} = \Delta m_{\lambda} = \frac{\upsilon}{c} m_{\lambda} = m_{\lambda} ka \tag{18}$$

B предельном случае, когда v=c, полевая масса m_{λ} и масса m_{ax} равны, $m_{\lambda}=m_{ax}$.

Волновое **«уплотнение»** массы, т_{ах}, можно рассматривать как **волновую квазичастицу**. Если эта масса окажется равной массе электрона, то квазичастица с такой массой может рассматриваться как **квазиэлектрон**, или **волновой электрон**, участвующий только в волновом процессе излучения и поглощения.

Таким образом, для волны λ **справедливы** следующие **соотношения**:

$$\frac{m_{ax}}{m_{\lambda}} = \frac{\upsilon}{c} = \frac{2\pi a}{\lambda} \tag{19}$$

и

$$m_{\lambda} = \frac{c}{v} m_{ax} \tag{20}$$

Если $v = v_0$ — Боровская скорость, соответствующая амплитуде, равной Боровскому радиусу $a = r_0$, $u m_{ax}$ есть масса, **равная массе** m_e **квазиэлектрона**, то, поскольку $\alpha = v_0/c \approx 1/137$, масса излучения (полевая масса) m_λ равна следующему числу элементарных квантов массы излучения (в единицах волнового кванта $m_{ax} = m_e$):

$$m_{\lambda} \approx 137 m_e$$
 (21)

4. Массы нейтрино и светоносных фотонов

B соответствии с **представлениями** современной физики **спектр электромагнитных волн** лежит примерно в следующих **пределах** частот: $3 \times 10^0 \div 3 \times 10^{22} \ s^{-1}$ (22)

Как следует из Динамической Модели [1, 6] фундаментальная частота обмена (взаимодействия) на субатомном уровне имеет порядок $10^{18}\,s^{-1}$: $\omega_{_{e}}=1.869162505\times10^{18}\,s^{-1}$ (23)

Данная частота, нерегистрируемая современными техническими средствами, по нашему мнению, является **максимальной частотой** спектра электромагнитных волн.

Фактически, это есть частота поля, принимаемого в современной физике за «электростатическое» (статические поля не существуют в Природе, где всё находится в непрерывном колебательно-волновом движении).

Кардинальное численное значение фундаментальной частоты ω_e кратно характеристическому значению метрологического спектра, связанного с фундаментальным периодом-квантом Десятичного Кода Вселенной [8].

Фундаментальный волновой радиус $\hat{\lambda}_{e}$, соответствующий **фундаментальной частоте** ω_{e} , имеет следующее значение:

$$\hat{\lambda}_e = c / \omega_e = 1.603886538 \times 10^{-8} \ cm \tag{24}$$

Величина λ_e в точности **равна половине** среднего **значения межатомных расстояний** в кристаллах.

Этот факт (наряду с другими, не упомянутыми здесь) свидетельствует о том, что несущая частота поля, равная фундаментальной частоте (23) атомного и субатомного уровней ω_e , ответственна за взаимодействие (связь) между атомами в веществе.

Предельному значению частотного диапазона ЭМ волн, в соответствии c ДМ, $v_{\max} = v_e = \omega_e / 2\pi = 2.97486452 \cdot 10^{17} \ s^{-1}$, отвечает следующее предельное значение полевой массы (при условии, что $v = \alpha c$):

$$m_{\lambda,\text{max}} = \frac{hv_e}{\alpha c^2} = \frac{6.6260693 \cdot 10^{-27} \cdot 2.97486452 \cdot 10^{17}}{7.297352568 \cdot 10^{-3} \cdot (2.99792458 \cdot 10^{10})^2} =$$

$$= 3.00549679 \cdot 10^{-28} \ g \approx 0.33 \ m_e,$$
(25)

где $m_e = 9.109382531 \cdot 10^{-28} g$ — масса электрона.

Как следует из **эксперимента** [9], такую же величину **массы** имеет **мюонное нейтрино**,

 $m_{\mu} < 170 \, keV = 0.33 \, m_e \tag{26}$

(масса электрона в единицах энергии mc^2 , $m_e c^2 = 0.51 \, MeV$)

Предельный квант массы частиц ЭМ диапазона волн, эквивалентный энергии mc^2 , равен (см. равенства (20) и (25)):

$$m_{ax} = m_{\lambda,\text{max}} \alpha = 2.193216972 \cdot 10^{-30} \, g \approx 2.4 \cdot 10^{-3} m_e$$
 (27)

ЭМ волны **спектра фотонов**, от ближнего **красного**, далее **видимого** и до ближнего **ультрафиолета**, относятся к **диапазону частот** порядка

$$v = 3 \cdot 10^{14} \div 3 \cdot 10^{15} \, s^{-1} \tag{28}$$

Значению $v = 6.15 \cdot 10^{14} \, s^{-1}$ из этого диапазона (длина волны $\lambda \approx 487 \, \text{нм}$, цвет излучения сине-зелёный) соответствует следующая величина полевой массы фотона

 $m_{ph} = \frac{hv}{\alpha c^2} = 62 \cdot 10^{-32} g \approx 68 \cdot 10^{-5} m_e$ (29)

Кардинальное численное значение, 68, полевой массы этого фотона кратно **характеристической величине** метрологического спектра, связанного с фундаментальным **периодом-квантом** Десятичного Кода Вселенной [8].

5. Спектр масс элементарных частиц и полевых масс фотонов

Итак, полевая масса фотона, $m_{ph} \approx 68 \cdot 10^{-5} \, m_e$ (29), лежит в сине-зелёной области полевых масс квантов видимого диапазона, вблизи ультрафиолета.

Она **кратна** в среднем (её **кардинальное число**, в единицах массы электрона) **фундаментальной мере** в **четверть фундаментального периода-кванта** Δ :

$$\frac{1}{4}\Delta = (\pi/2)\lg e = 0.682196844$$
 (30)

$$\Delta = 2\pi \lg e = 2.7288$$
 (31)

Масса g**-частицы** также кратна ¼ Δ и равна в среднем следующей величине: $m_g \approx \frac{1}{4} \Delta \cdot 10^2 = 68.22 \, m_e \qquad (32)$

В соответствии с ВМ, **массы всех** элементарных **частиц** принимают **строго определённые** дискретные (квантованные) **значения**.

Наряду с g-квантом (32) **значения масс других** хорошо-известных **элементарных частиц** также **кратны** (в среднем) $\frac{1}{4}\Delta$:

$$\gamma$$
 –кванты: $m_{\gamma} \approx \frac{2}{4} \Delta \cdot 10^2 = 136.44 m_e$ (33)

$$\mu^{\pm}$$
-мезоны: $m_{\mu} \approx \frac{3}{4} \Delta \cdot 10^2 = 204.656 m_e$ (34)

$$\pi^{\pm}$$
-мезоны: $m_{\pi} \approx \frac{4}{4} \Delta \cdot 10^2 = 272.88 \, m_e$ (35)

и т.д. (см. [10, 11].

g-Частице не повезло. Её **приписывали** спектру элементарных частиц под различными названиями, такими как **мюоник** и **электроник нейтрино** и **антинейтрино**, и т. д.

Средняя масса **тау-нейтрино**, открытая позднее [9], имеет величину около $34m_e$. Соответственно, g-квант может рассматриваться как состоящий из двух τ -частиц массой

$$m_{\tau} \approx \frac{1}{8} \Delta \cdot 10^2 = 34.11 m_e$$
 (36)

Соотношение между массами компонент **гипотетической** спаренной **системы**: m_{ph} (полевой массой **фотона** (29)) и m_e (массой **электрона**), почти **совпадает с** аналогичным **соотношением**, существующим между массами **электрона** m_e и **протона** m_p – составляющих **протонно-электронной** системы (водородного атома):

$$\frac{m_{ph}}{m_e} = \frac{62 \cdot 10^{-32} g}{9.109382531 \cdot 10^{-28} g} \approx 68 \cdot 10^{-5}$$
 (37)

$$\frac{m_e}{m_p} = \frac{9.109382531 \cdot 10^{-28} g}{1.67262171 \cdot 10^{-24} g} \approx 54.46 \cdot 10^{-5}$$
 (38)

Из соотношений масс, (37) и (38), видно, что частицы с полевой массой $m_{ph} \approx 68 \cdot 10^{-5} \, m_e$, являются скорее всего спутниками электронов, подобно тому, как электроны массой $m_e \approx 54.46 \cdot 10^{-5} \, m_p$ являются спутниками протонов.

Поэтому, при радиоактивном **бета-распаде** атомов вместе с **электронами** вылетают, по-видимому, их спутники — **нейтрино** (или антинейтрино). **Квант** массы излучения этих **частиц-спутников** (эквивалентный энергии тс², см. (15)) имеет следующую величину:

$$m = m_{ph}\alpha = 4.52 \cdot 10^{-33} g \approx 49 \cdot 10^{-7} m_e$$
 (39)

Действительно, эта масса близка к одному из оцененных верхних пределов масс электронных нейтрино, m_{ev} :

$$m_{ev} < 2.5 \, eV = 49 \cdot 10^{-7} \, m_{e}$$
 (40)

Частоте, лежащей вблизи **среднего** значения диапазона ЭМ **спектра** волн (22), $\langle v \rangle = 1.23 \cdot 10^{11} \, s^{-1}$, **отвечает** следующее значение **единичной полевой массы**:

$$m_{\lambda,\nu} = \frac{h < \nu >}{\alpha c^2} = 17.03201074 \cdot 10^{-33} \ g \approx 18.7 \cdot 10^{-6} \ m_e \tag{41}$$

В этом случае **квант массы** (эквивалентный энергии тс²) **равен**

$$m_{\nu} = m_{\lambda,\nu} \alpha = 124.2885873 \cdot 10^{-36} g \approx 136.44 \cdot 10^{-9} m_e$$
 (42)

Частота < v > относится к **экстремально высокой частоте** (ЕНF) диапазона **миллиметровых волн**. Это область **космического микроволнового фонового** излучения [12, 13].

Масса (42) взята нами далее для **оценочных** расчётов. Она **кратна половине** (в единицах массы электрона) **фундаментального кванта** меры $\Delta=2\pi \lg e$ (31), $(2/4)\Delta$. **Практически совпадает** с одним из весьма **вероятных масс нейтрино**, оцененных грубо в [14], в пределах около

$$m_{v} = 0.07 \pm 0.04 \, eV \tag{43}$$

Принимая во внимание **кратность** масс элементарных **частиц** вышеупомянутой **фундаментальной мере** в (1/4) Δ , ожидаемая **величина масс нейтрино** в единицах массы электрона **лежит в пределах**

$$m_{\nu} = (136 \pm 68) \cdot 10^{-9} m_{\rho} \tag{44}$$

6. Заключение

Рассмотрена концепция Волновой Модели, согласно которой [2] световой фотон представляет собой группу (кластер) субэлектронных частиц в локальной области пространства (из таких же субэлектронных частиц), подвергшихся возбуждению в процессе волнового распространения возмущения (переноса энергии), вызвавшего колебания данной группы частиц.

Энергия фотона – это энергия, переносимая квантом колебательно-волновой энергии указанной группы частиц пространства субэлектронного уровня.

Таким образом, в соответствии с принятой в ВМ концепцией фотона, введено понятие полевой массы группы (кластера) субэлектронных частиц (находящихся в локальной области возбуждённого пространства, состоящего из субэлектронных частиц) и понятие кванта массы излучения.

Возбуждённые **частицы** указанной группы никуда **не летят** под действием возмущения, а **лишь колеблются** относительно своих равновесных положений. **Перемещается** со скоростью **света** лишь **само возбуждение** («фотоны»).

Вследствие **передачи импульса возмущения** от частицы к частице возбуждаются по цепочке группы соседних субэлектронных частиц, **последующих** локальных **областей пространства**, так, как это происходит при распространении волн.

Базисная волновая **скорость** распространения **возмущения** («фотона») в пространстве **субэлектронных** частиц равна **скорости света**.

Группа частиц **локальной области**, до которой доходит **импульс** возмущения («фотон»), приходит в **колебательное движение** с амплитудой, зависящей от дошедшей до неё **энергии распространяющегося** в пространстве **возмущения** («фотона»).

Таким образом, световые фотоны, будучи согласно ВМ перемещающимися со скоростью света возмущениями поля-пространства субэлектронных частиц, являются реальными весомыми динамическими образованиями.

Согласно представлениям современной физики, напоминаю, фотоны – это нечто мистическое. Определённые как «нейтральные частицы», тем не менее не имеют никакого отношения к частицам, поскольку не имеют ни массы ни размеров. И это НИЧТО имеет энергию, летя в пространстве Вселенной со скоростью света!

Как следует из проведенного нами анализа, спектр эквивалентных масс фотонов (эквивалентных их энергии hv) совпадает со спектром масс нейтрино — частиц, принадлежащих субэлектронному уровню Вселенной. Они учавствуют в волновом процессе переноса возбуждения в пространстве — переноса энергии электромагнитного излучения.

Рассмотренные нами **частицы** составляют лишь **небольшую часть**, очевидно, **более** обширного **спектра** частиц **данного** уровня.

Частицы массой $m_{\rm v}=136.44\cdot 10^{-9}\,m_e$, идентичные по массе электронным нейтрино ($m_{\rm v}\equiv m_{\rm ev}$), по всей вероятности являются спутниками электронов.

Неудивительно поэтому, что при β -распаде вместе с электронами вылетают нейтрино (или антинейтрино), а оцененное для **электронных** нейтрино **предельное** значение их **массы** , $m_{ev,max}$, как известно из литературы, не превышает $m_{ev,max} = 20\,eV \approx 4\cdot 10^{-5}\,m_e$.

Концепция Волновой Модели о природе фотонов, как реальных весомых динамических образований из возбуждённых локальных групп частиц субэлектронного уровня [2], тождественных (как показано нами) по массе нейтрино, может развязать ряд проблем современной физики и астрофизики.

Покажем это далее во второй части – следующем слайд-представлении.

Кратко о содержании 2-й части:

На базе расмотренной в 1-й части концепции ВМ о природе фотонов объясняется природа «эфирного ветра» (скорость около 20 км/с), обнаруженного в экспериментах Дейтона Миллера (1866-1941) [15] в направлении юг-север.

Это **направление**, как было замечено нами, совпадает с силовыми линиями **горизонтальной** составляющей **магнитного поля** Земли.

Раскрывается таким образом единая **природа** так называемого **«эфирного ветра»** и **магнитного потока.**

Материальной **средой**, перемещающейся в обоих случаях (как в «**ефирном ветре**», так и в **магнитном потоке**), как оказалось, являются **субэлектронные частицы** (к которым мы относим и нейтрино).

То есть, имеет место **одно явление** – поток **субэлектронных частиц**.

Рассматриваются последовательно все этапы анализа, приведшие к раскрытию одной и той же природы материальной субстанции, переносимой как «эфирным ветром», так и магнитным потоком.

Приводятся характеристические для ВМ диалектической физики **базовые параметры** волнового **физического пространства**, даются соответствующие **определения**. В частности, приведены **объективные размерности Н** и **В** векторов.

Материал, содержащийся в **двух видео**, надеюсь **даст** более полное **понимание сути** представленной для обсуждения **гипотезы** ВМ о **природе тёмной материи**.

Эта гипотеза **возникла** естественно при анализе результатов, в **процессе приведения** характеристических параметров физических **волновых полей-пространств** в соответствие с концепциями ВМ.

На основании всей совокупности данных, в конце второй части делается вывод, что **субэлектронные частицы** (включая нейтрино), действительно являются одними из основных («**небарионных**») **составляющих тёмной материи** во Вселенной.

Весомыми **аргументами** в пользу справедливости вывода служат, в частности, достаточно убедительные данные, полученные при **оценке плотности** субэлектронных частиц в **межзвёздном** и **межгалактическом** пространствах.

Итак, продолжение темы во второй части (в следующем слайд-представлении)

Ссылки:

- [1] L. Kreidik and G. Shpenkov, *Atomic Structure of Matter-Space*, Geo. S., Bydgoszcz, 584 ctp., (2001).
- [2] G. P. Shpenkov, *Particles of the Subelectronic Level of the Universe*, Hadronic Journal Supplement, Vol. 19, No. 4, 533-548, (2004).
- [3] G. Shpenkov, *On the Nature of the Ether-Drift, Magnetic Strength, and Dark Matter*, Phys. Essays 20, 46 (2007); http://shpenkov.com/pdf/EtherShpenkov2007.pdf
 - [4] A. Einstein and L. Infeld, The Evolution of Physics, N.Y., 1938.
- [5] Георгий П. Шпеньков, $E_0 = mc^2$: Раскрытие механизма явления, скрытого за формулой, (05-05-2018); http://shpenkov.com/pdf/Emc2.pdf
- [6] L. Kreidik and G. Shpenkov, *Dynamic Model of Elementary Particles and the Nature of Mass and ``Electric'' Charge*, Revista Ciências Exatas Naturais, Vol. 3, No 2, 157-170 (2001); http://shpenkov.com/pdf/DM_Revista_2002.pdf
- [7] G. Shpenkov, *On the Fine-Structure Constant Physical Meaning*, Hadronic Journal, Vol. 28, No. 3, 337-372, (2005).

- [8] Г. П. Шпеньков, Период-Квант Десятичного Кода Вселенной (Открытие Волновой Модели); https://www.youtube.com/watch?v=ni-N_uX_Hwc http://shpenkov.com/pdf/DecCode.pdf
 - [9] Laboratory Measurements and Limits for Neutrino Properties; http://cupp.oulu.fi/neutrino/nd-mass.html
- [10] L. Kreidik and G. Shpenkov, *Interrelation of Values of Base Units and Fundamental Constants with the Fundamental Quantum of Measures*, in Foundations of Physics; 13.644...Collected Papers, Geo. S., Bydgoszcz, 1998, pp. 55-68; http://shpenkov.com/pdf/Metrology.pdf
- [11] L. Kreidik and G. Shpenkov, *Waves and Particles*, in Foundations of Physics; 13.644...Collected Papers, Geo. S., Bydgoszcz, 1998, pp. 71-130.
- [12] 1. G.F. Smoot (UCB/LBNL) and D. Scott (University of British Columbia), 19. Cosmic Background Radiation, in. Review on Big Bang Cosmology;

 http://pdg.lbl.gov (Revised February 2001).
- [13] G. Shpenkov and L. Kreidik, *Background Radiation of Hydrogen Atoms*, Revista Ciências Exatas e Naturais Vol. 4, No 1, 9-18 (2002);

http://shpenkov.com/pdf/MBR_Revista_2002.pdf

- [14] The Super Kamiokande Collaboration, *Discovery of Neutrino Mass and Oscillations*, The XVIII International Conference on Neutrino Astrophysics and Astrophysics, June 4-9, 1998, Takayama, Japan; http://www-sk.icrr.u-tokyo.ac.jp
- [15] J. DeMeo, *Reconciling Miller's Ether-Drift with Reich's Dynamic Orgone*, Pilse of the Planet, No 5, 138-147 (2002); see also http://www.orgonelab.org/miller.htm

Георгий П. Шпеньков 03.07.2018 http://shpenkov.com/pdf/DarkMatter-1.pdf