Природа Гравитации

(Открытие Волновой Модели)

Фундаментальная частота гравитационного поля, планетарные орбиты

Георгий П. Шпеньков

<u>g.shpenkov@gmail.com</u> http://shpenkov.com/pdf/GravityNature.pdf

Данное представление

посвящено дальнейшему **обсуждению открытий**, сделанных нами в рамках теорий Волновой Модели, в частности, <u>при анализе решений</u>

- (a) **классического волнового уравнения** и <u>при решении</u>
- (б) неизвестного ранее уравнения, полученного нами впервые при описании поведения пульсирующей волновой сферы частиц.

Это - открытия:

- * волновой природы гравитации и фундаментальной частоты волнового гравитационного поля [1], а также
- * гравитационного спектра равновесных волновых сферических оболочек, определяющего радиусы орбит планет звёздных систем и орбит их спутников.

В современной физике

Гравитационное взаимодействие

описывается частично **теорией тяготения Ньютона**, а в общем случае **общей теорией относительности** и, в так называемом квантовом пределе, незаконченной пока **квантовой теорией гравитации** [2, 3].

Однако ни одна из перечисленных теорий, начиная с Ньютоновской,

не в состоянии объяснить

природу гравитации, все они сфокусированы на описании опытных фактов, связанных с гравитацией.

Еще **Ньютон** в своем комментарии (General Scholium, 1713 г.) ко 2-й редакции своих Начал (Principia) написал, «Причину этих свойств тяготения я до сих пор не мог вывести из явлений, гипотез же я не измышляю (hypotheses non fingo)».

По этой причине:

Все попытки официальной физики найти связь Гравитационного взаимодействия,

описываемого общей теорией относительности, с остальными **двумя** видами фундаментальных взаимодействий, рассматриваемых в современной физике, **сильным** и **электромагнитным**, т. е., создать **единую теорию поля** («теорию всего», включая так называемое «слабое» взаимодействие),

заканчиваются неудачей

несмотря на огромные усилия теоретиков.

Гравитация до сих пор остается для официальной науки одним из ряда непостижимых явлений.

Всесторонний анализ, проведенный нами [2], показывает, что причиной неудачи официальной физики является неадекватность реальности базовых концепций Стандартной Модели и, в частности, общей теории относительности (теории тяготения).

Все в природе

Взаимосвязано

и находится

в естественной гармонии

Поэтому, **если теории верны**, указанная гармония и взаимосвяь должны присутствовать и в описании различных взаимодействий. Описание должно быть **единым**, **универсальным** для всех видов взаимодействий.

Судя по результатам исследований, которые мы впервые начали публиковать с 1996 г. (книга «Альтернативная Картина Мира», три тома [4]), этому описанию удовлетворяет разрабатываемая нами

Волновая Модель, решившая проблему гравитации

(наряду с другими проблемами физики)

Кардинально новая концепция о строении элементарных частиц, предложенная и реализованная в Волновой Модели [1, 3], привела к **открытию неизвестных** ранее физике базовых **параметров**, характеризующих их строение и поведение.

Соответственно, появились новые физические понятия.

Ключевые открытия

Волновой Модели (ВМ) наряду с другими открытиями, производными от ключевых,

стимулировали пересмотр устоявшихся догм при объяснении и описании явлений и отказ от неадекватных теоретических построений.

Таким образом, с развитием теорий ВМ начался **процесс замены** представлений, опирающихся на вымышленные постулаты, **адекватными реальности концепциями**.

Пошла **цепная реакция** ("эффект домино"), как из рога изобилия «посыпались» открытия, о которых я и рассказываю в представляемых мною материалах.

Реальная парадигма физики, заложенная в основание Волновой Модели, обеспечила прорыв в решении проблем, в том числе,

проблемы тяготения!

Об открытии

волновой природы гравитации и фундаментальной частоты гравитационного поля, сделанном в 1996 г. [4], рассказано, в частности, в последнем слайд представлении о Динамической Модели в 2016 г. [1] (http://shpenkov.com/pdf/DM.pdf) и в соответствующем видео:

Dynamic Model Elementary Particles

(Part 1. Basic notions)

https://www.youtube.com/watch?v=5wKpC_LSJYE

Материал об открытии был представлен на **19-й Международной Конференции по Общей Теории Относительности и Гравитации** в Мехико (2010 г. [5]), а также в других публикациях, начиная с 1996 г. (см., например, [6]).

В начале данной презентации, в продолжение темы гравитации, напомню основные положения открытия, а затем представлю дополнительные данные.

В соответствии с ДМ элементарные частицы являются конечнобесконечными образованиями волнового поля-пространства Вселенной, ограниченными микро (субатомными) и мега (гравитационными) волновыми сферическими оболочками, пульсирующими на соответствующих этим оболочкам частотах, ω_e и ω_{ϱ} .

Установлено, что

Гравитационное взаимодействие тел является результатом суммарного резонансного волнового обмена (взаимодействия) всех элементарных частиц, из которых состоят тела, на собственной экстремально низкой фундаментальной частоте обмена ω_g , внутренне присущей каждой частице [5].

Вспомним

Два основных закона физики

- а) Закон всемирного тяготения Ньютона (1686 г.) и
- б) Закон Кулона взаимодействия точечных электрических зарядов (1785-1788 г.):

$$F = G \frac{m_1 m_2}{r^2} \qquad \text{if} \qquad F = k \frac{q_1 q_2}{r^2} \tag{1}$$

Законы (1) относятся к

Противоположным мирам: мегамиру и микромиру

Они описывают явления, протекающие на разных по масштабу уровнях Вселенной. **Подобны** по форме, имеют **одинаковую** функциональную зависимость: как для взаимодействующих гигантских масс, так и для крошечных элементарных **зарядов**.

Однако, с момента открытия они считаются разными, абсолютно не связанными между собой. А всё потому, что природа взаимодействий, описываемых ими, до сих пор непонята официальной физикой из-за незнания, прежде всего, природы происхождения массы и заряда.

Гипотеза Хиггса о некоей частице с «целым значением спина» («бозоне»), якобы ответственной за инертную массу всех частиц, не выдерживает критики [7]. А что такое заряд? Физика также не знает ответа.

Таким образом,

Современная физика, которая опирается на Стандартную Модель, не смогла до сих пор раскрыть природу ключевых физических параметров, входящих в оба закона: массы m и заряда q, а также коэффициентов пропорциональности G и k.

Входящий в закон Ньютона коэффициент, назваемый **гравитационной постоянной**, $G = 6.67384(80) \times 10^{-8} \ cm^3 g^{-1} s^{-2}$, является параметром, величина и размерность которого получены опытным путём.

Величина и размерность **коэффициента** пропорциональности k в законе Кулона неизвестны:

В объективной системе единиц CGS (cm, g, s) k был принят за безразмерную единицу, k=1, что привело к абсурдной размерности заряда q, выраженной дробными степенями при единицах длины и массы ($[q] = g^{\frac{1}{2}} cm^{\frac{3}{2}} s^{-1}$).

В международной системе СИ подобная ситуация с размерностью, что убедительно показано, например, в [8, 9].

Признавая волновую природу всего сущего,

гармонию и взаимосвязь всех процессов и явлений во Вселенной,

мы пришли к выводу, следуя элементарной логике, что оба закона (1) являются частными случаями существующего в природе единого закона, описывающего волновые взаимодействия, которому подчиняются волновые объекты разных уровней Вселенной.

<u>Повторяю.</u> Волновая Модель опирается на принципиальную концепцию в соответствии с которой все объекты, процессы и явления во Вселенной имеют волновую природу.

Это значит, что закон Ньютона $F = G \frac{m_1 m_2}{r^2}$ и закон Кулона $F = k \frac{q_1 q_2}{r^2}$ (1) являются законами, описывающими волновые взаимодействия, соответственно, масс и зарядов, которые, как и все объекты во Вселенной, имеют волновое происхождение и, следовательно, ведут себя как волновые образования.

И, действительно, иследования в рамках ВМ привели нас к открытию

Универсального закона обмена (взаимодействия)!

Для нахождения вида

Универсального закона взаимодействия,

очевидно, надо было разобраться с природой всех **четырёх** физических **параметров**, входящими в обе формулы, а именно, **необходимо** было **установить**:

- 1) что такое **масса** m и какова ее природа;
- 2) что такое заряд q, какова его природа и, следовательно, истинная размерность (выраженная целочисленными степенями при объективных единицах CGS);
- 3) от каких параметров зависит гравитационная постоянная G;
- 4) от чего зависит **коэффициент** пропорциональности k в законе Кулона, какова его величина и размерность;
- 5) как связаны между собой физические параметры т и q;
- 6) как связаны между собой коэффициенты пропорциональности G и k.

Официальная физика, опирающаяся на Стандартную Модель, не в состоянии разобраться с указанными **проблемами**. В рамках принятых в современной физике теорий эти проблемы **нерешаемы в принципе** и, поэтому, так и остаются белым пятном, сдерживающим развитие физики.

Покажем решения,

полученные нами в рамках ВМ по перечисленным выше проблемам:

Природа ключевых параметров,

входящих в законы (1), Ньютона и Кулона, раскрытых в Волновой Модели:

- 1) Масса частиц *т* является присоединенной волновой по происхождению, имеет динамический характер (см. [1]). Масса покоя частиц не существует.
- 2) Электрический q_e , магнитный q_m и гравитационный q_g заряды являются зарядами обмена, определяют скорость соответствующего волнового обмена (взаимодействия), их размерность $g \times s^{-1}$.
- 3) Гравитационная постоянная G величина, зависящая от фундаментальной частоты элементарных частиц на мега уровне ω_g , определяющей их гравитационное взаимодействие с другими частицами:

$$G = \omega_g^2 / 4\pi \varepsilon_0 \tag{2}$$

Постоянная G известна из эксперимента, $G = 6.67384 \times 10^{-8} \ cm^3 g^{-1} s^{-2}$, ε_0 в ВМ есть абсолютная единица плотности, $\varepsilon_0 = 1 \ g \times cm^{-3}$. Отсюда следует, что частота ω_g равна: $\omega_g = 9.158082264 \times 10^{-4} \ s^{-1}$ (2a)

4) **Коэффициент** пропорциональности в законе Кулона равен $1/4\pi$, а его размерность обратна размерности плотности,

$$k = \frac{1}{4\pi\varepsilon_0} cm^3 \times g^{-1} \tag{3}$$

- 5) Параметры m и q в законах Ньютона и Кулона (1) связаны между собой следующим образом:
- а) на гравитационном уровне соотношением

$$q_g = m\omega_g \tag{4}$$

б) на атомном и субатомном уровнях подобным образом

$$q_{e} = m\omega_{e} \tag{5}$$

где

$$\omega_e = e/m_e = 1.869162559 \times 10^{18} \, s^{-1}$$
 (6)

есть фундаментальная частота атомного и субатомного уровней.

$$e = m_e \omega_e = 1.702691627 \times 10^{-9} \ g \cdot s^{-1}$$
 (7)

- элементарный **квант скорости массобмена** (взаимодействия), "заряд" электрона, m_e присоединенная масса электрона.
- 6) Параметры G и k, как видно из (2) и (3), **связаны** между собой соотношением $G = k\omega_a^2$ (8)

С раскрытием параметров, Волновая Модель привела нас к открытию

Универсального Закона Обмена,

который описывает три вида взаимодействий: сильное, электромагнитное и гравитационное. Он имеет следующий вид:

$$F = \omega_x^2 \frac{(Z_1 m_x)(Z_2 m_x)}{4\pi \varepsilon_0 r^2}$$

(9)

где Z_1 и Z_2 – относительные массы взаимодействующих объектов, $m_x -$ масса элементарных обменных зарядов (электрона m_e или нуклона m_n), $\epsilon_0 = 1 \ g \times cm^{-3} -$ абсолютная единица плотности, ω_x — фундаментальная частота (ω_e или ω_g).

Закон Кулона и Ньютоновский закон всемирного тяготения являются частными случаями Универсального Закона Обмена (9) [2, 3, 10, 11]:

Закон Кулона

(10)
$$F_{elec} = \omega_e^2 \frac{(Z_1 m_e)(Z_2 m_e)}{4\pi \varepsilon_0 r^2} \qquad F_{grav} = \omega_g^2 \frac{(Z_1 m_n)(Z_2 m_n)}{4\pi \varepsilon_0 r^2}$$

Закон Ньютона

$$F_{grav} = \omega_g^2 \frac{(Z_1 m_n)(Z_2 m_n)}{4\pi \varepsilon_0 r^2}$$
 (11)

Таким образом, благодаря Динамической Модели мы пришли к

Единой теории,

описывающей три вида фундаментальных взаимодействия:

сильное, электромагнитное и гравитационное

(что невозможно в принципе в рамках современных теорий физики, базирующихся на Стандартной Модели).

Частные случаи

Универсального Закона Обмена (9), закон **Кулона** (10) и **Ньютона** (11), описывают, соответственно, обмен (взаимодействие):

- а) на уровне волнового "электрического" поля (10) (межатомное взаимодействие) на основе электрона, обладающего присоединенной массой m_e и обменным ("электрическим") зарядом $e=m_e\omega_e$; и
- б) обмен (взаимодействие) на уровне **гравитационного** волнового поля (11) на основе гравитона-нуклона, обладающего присоединенной массой m_n и обменным гравитационным зарядом $q_g = m_n \omega_g$

В случае описания сильного взаимодействия (обмена) [12] универсальный закон обмена (9) принимает вид

$$F_{strong} = \omega_e^2 \frac{(Z_1 m_n)(Z_2 m_n)}{4\pi \varepsilon_0 r^2}$$
 (12)

Таким образом

В соответствии с ДМ

частицы пульсируют на двух фундаментальных частотах одновременно.

На этих частотах осуществляется их **обменное взаимодействие** (**гравитационное**, **электромагнитное** и **сильное**) с окружающей средой, полем и другими частицами, подчиняющееся Универсальному Закону Обмена (9).

Первая, экстремально высокая фундаментальная частота пульсации частички, $\omega_e=1.869162559\times 10^{18}~s^{-1}$, ответственна за электромагнитное и сильное взаимодействия.

Эта частота объясняет, в частности, причину упорядочения в расположении взаимодействующих атомов (являющихся волновыми образованиями в соответствии с ДМ) в кристаллах со средним шагом (межузельным расстоянием, параметром решетки) порядка $3.2 \times 10^{-8}~cm$ равным в точности удвоенному волновому радиусу $2\lambda_{_{\rho}}$, где

$$\lambda_e = \frac{c}{\omega_e} = 1.603886492 \times 10^{-8} \ cm \tag{13}$$

Вторая, экстремально низкая фундаментальная частота пульсации частички

$$\omega_g = 9.158082264 \times 10^{-4} \ s^{-1} \tag{14}$$

ответственна за ее гравитационное взаимодействие.

Подтверждением реальности пульсаций частиц с частотой ω_g , и взаимодействия их на этой частоте, является теоретический расчет **средних** радиусов орбит планет и их спутников [10, 13]. (Формула спектра орбит и другие подробности будут показаны далее)

Корреляция между результатами расчета и данными астрономических наблюдений оказалась вполне **удовлетворительной**. На расстоянии от Солнца равном в среднем гравитационному волновому радиусу,

$$\lambda_g = \frac{c}{\omega_g} = 3.274 \times 10^{13} \ cm = 327.4 \times 10^6 \ km$$
 (15)

разделяющей кольцо астероидов. Гравитационный радиус является границей, разделяющей колебательную и волновую зоны частички. Поэтому окрестность этой границы представляет собой пространственную областьсферу интенсивного движения.

Таким образом,

Гравитационная частота (14) определяет гравитационный радиус элементарной частицы (15),

который одновременно является элементарной радиальной гравитационной волной.

Волновая оболочка гравитационного радиуса частицы в звездных системах, которые в свою очередь являются сферическими объектами мега пространства (атомами Мегамира), разделяет колебательную область сферического поляпространства звезды и ее волновую область.

Мы на нашей Земле находимся **внутри гигантской гравитационной волны** и, поэтому, **воспринимаем** гравитационное поле не как волновое, а как **стационарное**.

Мощность гравитационного обмена («сила» гравитации) для отдельных частиц, как следует из Универсального Закона Обмена [3, 11], есть ничтожно малая величина. Но **гигантское количество частиц** (Солнце состоит, примерно, из 10^{57} нуклонов) компенсирует эту ничтожно малую величину и в сумме, на мега уровне, приводит к весьма значительному эффекту — гравитационному притяжению.

Одним из доказательств справедливости представлений ВМ о волновой природе гравитации является открытие гравитационного спектра орбит планет и их спутников:

Выяснение природы

существующего порядка в расположении орбит планет

на строго определенных **средних расстояниях** от Солнца, и **орбит спутников** от своих планет, до сих пор является <u>неразрешимой проблемой</u> для современной физики и астрофизики, одной из неразгаданных тайн.

Как всё же

официальная физика объясняет данный факт?

Ньютоновский закон гравитации и законы **Кеплера** хотя и позволяют связать размеры орбит планет с периодами обращения, но **не позволяют** рассчитывать сами орбиты. Стандартная Модель также беспомощна здесь, как и во многих других случаях.

Поэтому до настоящего времени удаленность планет от Солнца (средние радиусы орбит) вычисляется по простой эмпирической формуле, предложенной ещё И. Д. Тициусом 250 лет назад, в 1766 г., и популяризированной далее И. Э. Боде в его работах 1772 г. Формула называется в их честь Правилом Тициуса — Боде (или Законом Боде).

В одной из версий записи закона Боде

Средний радиус орбит

(в астрономических единицах) подчиняется формуле

$$R_i = \frac{D_i + 4}{10} \tag{16}$$

где $D_{-1} = 0$, $D_i = 3 \times 2^i$, $i \ge 0$.

Рассчитанные значения коррелируют в определенных пределах разброса величин с астрономическими данными, но не для всех планет.

Например, на рассчитанной орбите для i=3 вместо планеты существует пояс астероидов. Почему? Неизвестно. Орбиты Нептуна и Плутона также выпадают из расчетов, выполненных этой эмпирической формулой.

А самое главное, эмпирическое правило Тициуса—Боде

не имеет теоретического обоснования

Концептуальная база для аналитического вывода их формулы отсутствует.

Существует лишь тривиальное словесное объяснение (по сути констатация само собой разумеющегося факта) в соответствии с которым на стадии формирования Солнечной системы сформировалась регулярная структура из чередующихся областей, в которых могли или не могли существовать стабильные орбиты согласно так называемому правилу орбитальных резонансов (определенного отношения радиусов соседних орбит).

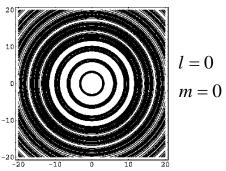
Новые теории заслуживают внимания,

если они объясняют то, что необъяснимо существующими теориями. Волновая Модель отвечает этому критерию!

В разрешении проблемы орбит представляем следующее открытие ВМ:

Спектр равновесных гравитационных волновых оболочек частиц

$$r = \hat{\lambda}_g z_{m,n} = 327.4 \times 10^6 \times z_{m,n} \ km$$
 (17)


где χ_g гравитационный волновой радиус (15) частиц, $\chi_g = \frac{c}{\omega_g} = \frac{1}{k_g}$, соответствующий фундаментальной частоте гравитационного поля, ω_g , определяемой из решений уравнения центрального обмена ДМ (см. [1,

 $\hat{F} = \frac{4\pi r^3 \varepsilon_0 \varepsilon_r}{(1 - ikr)\hat{\mathbf{v}}_{io}}$

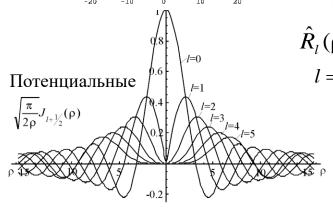
$$\hat{F}_s = \frac{4\pi r^3 \varepsilon_0 \varepsilon_r}{1 + k^2 r^2} (1 - ikr) \hat{\mathbf{v}} i\omega \tag{18}$$

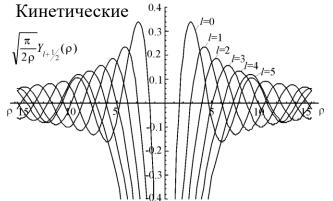
 $z_{m,n}$ корни (нули) функций Бесселя [14], являются решениями радиальной составляющей волнового уравнения

$$\Delta \hat{\Psi} - \frac{1}{c^2} \frac{\partial^2 \hat{\Psi}}{\partial t^2} = 0 \tag{19}$$

Общее решение

уравнения
$$\Delta \hat{\Psi} - \frac{1}{c^2} \frac{\partial^2 \hat{\Psi}}{\partial t^2} = 0$$
 (19):
$$\hat{\Psi} = \hat{R}_t(\rho) \Theta_{tm}(\theta) \hat{\Phi}_m(\phi)$$
 (20)


Радиальные решения


$$\hat{R}_{l}(\rho)/A = \sqrt{\pi/2\rho} (J_{l+\frac{1}{2}}(\rho) \pm iY_{l+\frac{1}{2}}(\rho))$$
 (21)
 $l = 0,1,2,...; \qquad m = 0,\pm 1,\pm 2,...,\pm l$

 $\rho = k_r r = r/\lambda_r$ — относительный **радиус характеристических** волновых **оболочек**. Определяется **корнями** $\mathcal{Z}_{\nu,q}$ (**нулями** и экстремальными значениями) функций **Бесселя**; $\nu = l + \frac{1}{2}$ — **порядок** функций, q — **номер** нуля или экстремума; $k = \omega/c$

$$z_{v,q} = \rho = kr_{v,q} \tag{22}$$

 $k=k_e=\omega_e/c=1/\lambda_e$ субатомный и атомный $k=k_g=\omega_g/c=1/\lambda_g$ гравитационный уровень Отсюда, $r=\lambda_g z_{{
m v},q}$ (см. формулу (17))

Равновесные орбиты планет звёздных систем и их спутников,

как следует из ВМ, определяются простым по форме равенством

$$r = \hat{\lambda}_g z_{\nu,q} \tag{17}$$

Оно имеет ясное физическое содержание, отражает волновую природу всех объектов и их взаимодействий на мега (гравитационном) уровне. В него входят всего два параметра: один из них это волновой гравитационный радиус элементарных частиц λ_g , соответствующий характеристической экстремально низкой частоте их пульсаций; второй параметр — корни функций Бесселя $\lambda_{m,n}$.

Решение (17) **реализуется** в первом приближении **в спектре** Кеплеровских **оболочек-орбит**, если принять, что эти оболочки сферические и, следовательно, орбиты круговые (см. Таблица 1).

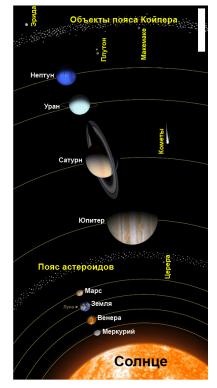
Естественно, **в условиях** межпланетарного гравитационного взаимодействия (вызывающего **возмущения**) планеты движутся не по идеальным круговым орбитам, к которым они стремятся постоянно, как к равновесным. **Взаимное возмущение** в итоге превратило **круговые** орбиты **в эллиптические**, а поскольку **эксцентриситет незначительный**, орбиты планет можно рассматривать в первом приближении (при анализе) как круговые.

Таблица 1 Гравитационный спектр H-атомных волновых сферических оболочек.

s	$z_{m,n} = j_{0,s}$	r, Mkm	Планеть	*	
1	2.4048	787.3	Юпитер	(778.57)	
2	5.5201	1807.3	Сатурн	(1433.45)	
3	8.6537	2833.2	Уран	(2876.68)	
4	11.7915	3860.5			
5	14.9309	4888.4	Нептун	(4503.4)	
6	18.0711	5916.5	Плутон	(5906.5)	

^{*)} Планеты, расположенные в относительной близости к указанным сферическим оболочкам. В скобках указаны большие полуоси эллиптических орбит планет.

Из (17) следует важное в практическом смысле соотношение:


$$r_s = r_1 \frac{z_{m,s}}{z_{m,1}} \tag{23}$$

Если взять за базовую гравитационную волновую оболочку Солнца,

 $r_1 = 57.91 \, Mkm$, на которой располагается орбита планеты Меркурий, то мы приходим к следующему гравитационному спектру, обусловленному решениями функций Бесселя первого порядка (Таблица 2).

Таблица 2 Гравитационный спектр волновых сферических оболочек частиц.

S	$z_{m,n} = j_{1,s}$	r _s , Mkm	Планеты
1	3.831706	57.91	Меркурий
2	7.015587	106.03 (108.2)	Венера
3	10.17347	153.76 (149.6)	Земля
4	13.32369	201.36 (204.5)	Торо
5	16.47063	248.93 (227.9)	Марс
9	29.04683	438.96	413.77 (Церера)
16	51.04354	771.44 (778.57)	Юпитер
30	95.02923	1436.2 (1433.45)	Сатурн

В скобках указаны большие полуоси эллиптических орбит планет. Для малой планеты Торо в скобках указано среднее расстояние от Солнца.

Переходная область, между **колебательной** и **волновой**, разделяемая волновым гравитационным радиусом $\lambda_g = 327.4 \ Mkm$, представлена **поясом астероидов** вокруг Солнца (радиус орбит в среднем 329.12 - 538.56 Mkm).

В центре области **среди астероидов** находится единственная **карликовая планета** Церера (1 Ceres). Большие планеты там отсутствуют, поскольку в процессе формирования солнечной системы **переходная область** была местом наиболее **интенсивного движения**.

В дополнение в Таблицах 3, 4 и 5 представлены спектры $r_s(j_{1,s})$ и $r_s(y_{1,s})$ волновых гравитационных оболочек Юпитера, Сатурна и Урана, следующие из соотношений, вытекающих из (23):

$$r_s(j_{1,s}) = r_1 \frac{j_{1,s}}{j_{1,1}}$$

$$r_s(y_{1,s}) = r_1 \frac{y_{1,s}}{j_{1,1}}$$
(24)

где $j_{1,s}$ и $y_{1,s}$ - корни функций Бесселя [13]; $\langle r_s \rangle$ являются большими полуосями орбит (a) спутников планет, известными из астрономических наблюдений.

Таблица 3 Спектр волновых гравитационных оболочек Юпитера; $r_s \ kkm$.

1 2	71.492 130.9	101.3	120.0 (Advector) 120 (Metic)	
2		101.3	120 0 /Advector) 120 /Metic)	
			129,0 (Adrastea), 128 (Metis)	
3	189.8	160.38	181.4 (Amalthea)	Главное кольцо
4	248.6	219.2	221.9 (Thebe)	Внешнее паутинное кольцо
7	424.7	395.3	421.8 (Jo)	Амальтея Адрастея Метида
11	659.2	629.9	671.1 (Europa)	Фива
18	1069.6	1040.3	1070.4 (Ganymede)	
32	1890.29	1860.98	1882.7 (Callisto)	

 r_1 =71.492 kkm – экваториальный радиус планеты Юпитер

Таблица 4 Спектр волновых гравитационных оболочек Сатурна; $r_s \ kkm$.

11/22	- 578		
s	$r_s(j_{1,s})$	$r_s(y_{1,s})$	$< r_s >$ (experiment); большая полуось, a
1	60.268		
2	110.346	85.40	74.5-92.0 (Кольцо С)
			92.0-117.5 (Кольцо В)
3	160.0	135.20	137.67 (Atlas), 139.38 (Prometheus)
			133.58 (Pan), 136.5 (Daphnis)
			122.2-136.8 (Кольцо А)
			140.210 (Кольцо F)
			165.8-173.8 (Кольцо G)
4	209.56	184.8	185.539 (Minas)
5	259.06	234.3	238.037 (Enceladus)
6	308.53	283.8	294.67 (Tethys)
			294,71 (Telesto, Calypso)
7	357.99	333.26	180.0-480.0 (Кольцо Е)
8	407.43	382.71	377.42 (Dione, Helene)
			377.2 (Polydeuces)
			F27.04 (Block)
11	555.73	531.02	527.04 (Rhea)
25	1247,61	1222.9	1221.865 (Titan)
30	1494.69	1469.98	1500.934 (Hyperion)

 r_1 =60.268 kkm – экваториальный радиус планеты Сатурн. Для колец указаны расстояния до центра Сатурна.

Таблица 5 Спектр волновых гравитационных оболочек Урана; $r_s \ kkm$.

r_s ($j_{1,s}$)	$r_s(y_{1,s})$	$< r_s >$ (experiment); большая полуось a	
25.559			
46.8	36.2	49.8 (Cardelia)	
67.85	57.34	59.2 (Bianka), 66.1 (Portia) 69.9 (Rosalind)	Умбриэль
88.87	78.37	86.0 (Puck), 76.42 (Perdita) 74.39 (Cupid)	Беринда Брелит
109.86	99.36	97.736 (Mab)	Пак
130.84	120.36	129.9 (Miranda)	Порция Уран Корде Деорегиона
193.75	183.27	190.9 (Ariel)	
277.6	267.12	266.0 (Umbriel)	Миранда
445.27	434.79	436.3 (Titania)	
591.97	581.5	583.5 (Oberon)	

 r_1 =25.559 kkm – экваториальный радиус планеты Уран

Корреляция между

- * результатами расчета по формулам (17, 23, 24) волновых гравитационных оболочек Солнца а также волновых гравитационных оболочек её планет и
- * <u>оцененных</u> из <u>астрономических наблюдений</u> большими полуосями эллиптических орбит планет Солнечной системы и орбит спутников этих планет вполне удовлетворительная.

Заключение

На базе Волновой Модели, решая проблему гравитации,

Сделаны следующие ключевые открытия:

- 1) Волновой природы гравитации.
- 2) Фундаментальной частоты гравитационного волнового поля.
- 3) Гравитационного спектра равновесных волновых сферических оболочек, определяющего радиусы орбит планет звёздных систем и орбит их спутников.

Таким образом,

Разгадана тайна

существующего порядка в расположении орбит планет на строго определенных средних расстояниях от Солнца и порядка в расположении орбит спутников этих планет.

Планеты и их спутники движутся в пространстве по орбитам, сформировавшимся в дискретных областях спектра (17) гравитационных волновых сферических оболочек частиц, из которых состоят Солнце и планеты солнечной системы.

Теоретической базой

Открытия гравитационного волнового **спектра** частиц материи (17),

$$r = \lambda_{g} z_{m,n}$$

явились:

(а) решения уравнения (18) Динамической Модели элементарных частиц, приведшие к открытию характеристической фундаментальной частоты (14),

$$\omega_g = 9.158082264 \times 10^{-4} \, s^{-1}$$

а также

(б) **радиальные решения** (корни функций Бесселя, $z_{m,n}$) универсального (классического) **волнового уравнения** (19).

Следует отметить

Подобие спектров волновых оболочек частиц

Спектр (17):

$$r = \lambda_g z_{m,n}$$

гравитационных волновых оболочек частиц (а, соответственно, спектр орбит планет), обусловленный их волновым (гравитационнм) полем экстремально низкой частоты $\omega_{\rm g}$, и

Спектр:

$$r = \hat{\lambda}_e z_{m,n} \tag{25}$$

атомных волновых оболочек частиц, соответствующий **экстремально высокой** фундаментальной частоте ω_e , характерный, в частности, для **атома водорода**,

подобны

Частицы, будучи **экстремально малыми** и **бесконечно большими** одновременно, в полном соответствии с ДМ, описываются на обоих уровнях **тем** же самым волновым уравнением (19),

$$\Delta \hat{\Psi} - \frac{1}{c^2} \frac{\partial^2 \hat{\Psi}}{\partial t^2} = 0$$

Поэтому его решения как для атомного (25), так и гравитационного уровней (17) **подобны.** Отличие в частотах и, соответственно, волновых радиусах: в (17) волновой радиус λ_g , а в (25) — λ_e .

Аналогично, имеет место

Подобие законов взаимодействий

Законы обменного взаимодействия частиц

(как и спектры их волновых оболочек, (17) и (25))

на обоих рассматриваемых уровнях Вселенной, атомном и гравитационном, к которым они принадлежат одновременно, будучи конечно-бесконечными по размеру [1], так же

 Π одобны: (11)

$$F_{elec} = \omega_e^2 \frac{(Z_1 m_e)(Z_2 m_e)}{4\pi \varepsilon_0 r^2}$$

$$F_{elec} = \omega_e^2 \frac{(Z_1 m_e)(Z_2 m_e)}{4\pi \varepsilon_0 r^2}$$

$$F_{grav} = \omega_g^2 \frac{(Z_1 m_n)(Z_2 m_n)}{4\pi \varepsilon_0 r^2}$$

Оба закона, Кулона (10) и Ньютона (11), как частные случаи, подчиняются общему Универсальному Закону Обмена,

$$F = \omega_x^2 \frac{(Z_1 m_x)(Z_2 m_x)}{4\pi \varepsilon_0 r^2}$$
 (9)

Дополнительное доказательство справедливости открытия

волновой природы гравитации и численного значения её фундаментальной частоты:

Гравитационная частота $\omega_{\rm g}$ (14) определяет радиальную временную волну-период, $T_{\rm g} = \frac{2\pi}{\omega_{\rm g}} = 0.686080898 \times 10^4 \, s \tag{26}$

На орбите с одним узлом укладывается только **одна полуволна фундаментального тона** (см., например, [15]), поэтому радиальному волновому периоду (16) соответствует следующая по величине

Азимутальная временная волна

фундаментального тона,

$$T_{azimuth} = 4\pi T_g = 8.621546841 \times 10^4 s$$
 (27)

Значение (27) практически совпадает со Звездными сутками

23 hours 56 min 4
$$s = 8.6164 \times 10^4 s$$

Временная волна $T_{azimuth}$ повторяет структуру пространственной волны фундаментального тона на Боровской орбите атома водорода, $\lambda = 4\pi r_0$.

Эти соотношения показывают, что Земля находится в гармонической резонансной связи с фундаментальной частотой гравитационного поля $\omega_{\rm g}$.

Подобно электрон на Боровской орбите в атоме водорода находится в гармонической резонансной связи с фундаментальной частотой атомного и субатомного уровней ω_e .

Подтверждаются слова текста

Изумрудной скрижали

обнаруженной на могиле Гермеса Трисмегиста (Tabula Smaragdina Hermetis)

Verum est sine mendacio, certum et verissimum:

Quod est inferius est sicut id quod est superius.

Et quod est superius est sicut id quod est inferius, ad perpetranda (praeparanda, penetranda) miracula rei unius. Истинно — без всякой лжи, достоверно и высшей степени **истинно**:

То, что находится внизу, аналогично тому, что находится вверху.

И то, что вверху, аналогично тому, что находится внизу, чтобы осуществить чудеса единой вещи (то есть философского камня).

[Chrysogonus Polydorus. De Alchimia. Nuremberg, 1541] [Странден Д. *Герметизм. Его происхождение и основные учения (Сокровенная философия египтян*). — СПб.: Издание А. И. Воронец, 1914]

Открытия

фундаментальной частоты волнового гравитационного поля и

Универсального Закона Обмена

позволяют сделать сказку о «ковре-самолёте» былью.

Решается, наконец, проблема управления величиной и направлением гравитационного взаимодействия различных объектов (естественных и искусственных)

Литература

- [1] George P. Shpenkov, *Dynamic Model of Elementary Particles*, 01.11.2016; http://shpenkov.com/pdf/DM.pdf
 https://www.youtube.com/watch?v=5wKpC_LSJYE
- [2] Георгий Шпеньков, *Несколько слов о фундаментальных проблемах физики*, *Природа гравитации*, *Планетарные орбиты*, LAP LAMBERT Academic Publishing, стр. 29-43, 2012; http://shpenkov.com/pdf/FundPhysProb.pdf
- [3] G. P. Shpenkov, DIALECTICAL VIEW OF THE WORLD: The Wave Model (Selected Lectures); Volume 2, *Dynamic Model of Elementary Particles*: Part 1, *Fundamentals*, *Lectures* 5-7, pages 51-77 (2013); http://shpenkov.com/pdf/Vol.2.DynamicModel-1.pdf
- [4] L. G. Kreidik and G. P. Shpenkov, "Alternative Picture of the World", Volumes 1-3; Bydgoszcz, 1996.
- [5] G. P. Shpenkov, *The Nature of Gravitation: a New Insight*. A PowerPoint presentation prepared for the 19th International Conference on General Relativity and Gravitation, 5-9 July, 2010 Mexico City;

http://shpenkov.com/pdf/A1-36-GR19-2010.pdf

http://shpenkov.janmax.com/GR19-2010Mexico.asp

- [6] L. G. Kreidik and G. P. Shpenkov, *Dynamic Model of Elementary Particles and the Nature of Mass and "Electric" Charge*, Revista Ciencias Exatas e Naturais, Vol. 3, No 2, 157-170, (2001); http://shpenkov.com/pdf/masscharge.pdf
- [7] Открытый протест русского физического общества «По поводу присуждения Нобелевской премии по физике за 2013 год»; ЭНЦИКЛОПЕДИЯ РУССКОЙ МЫСЛИ, Том 20: Доклады Русскому Физическому Обществу, 2013, Часть 2, стр. 3-8; http://www.rusphysics.ru/files/ERM%2020==.pdf http://shpenkov.com/pdf/HiggsBoson(Rus).pdf
- [8] G. P. Shpenkov and L. G. Kreidik, *What the Electric Charge is*, 2002; http://shpenkov.com/pdf/Elec-Charge.pdf
- [9] Шпеньков Г. П., *Размерность единицы электроёмкости «фарад» и смысл «электрической постоянной»* ε₀; НАУЧНЫЙ ЖУРНАЛ РУССКОГО ФИЗИЧЕСКОГО ОБЩЕСТВА, ЖРФХО, Т. 88, вып. № 2, pages 33-41 (2016)
- [10] G. P. Shpenkov, *The Wave Nature of Gravitational Fields:* General Characteristics (2007); http://shpenkov.com/pdf/Gravitation.pdf
- [11] L. G. Kreidik and G. P. Shpenkov, *Atomic Structure of Matter-Space*, Geo. S., Bydgoszcz, 2001, 584 p.; http://shpenkov.janmax.com/atom.asp

- [12] G. P. Shpenkov, *The Binding Energy of Helium* $_2^4$ *He* , *Carbon* $_6^{12}$ *C* , *Deuterium and Tritium in View of Shell-Nodal Atomic Model and Dynamic Model of Elementary Particles*; http://shpenkov.com/pdf/stronginteraction.pdf
- [13] G. P. Shpenkov, A New Theory of Matter-Space-Time: Evidences in Support of An Advantage Over The Modern Theory Accepted in Physics and The Perspective To Be of Use; A lecture delivered in Military Academy, Warsaw, Poland, at October 20, 2006;

http://shpenkov.com/pdf/Theory-DM-English.pdf

- [14] Bessel Functions, part. III, Zeros and Associated Values, in *Royal Society Mathematical Tables*, Volume 7, edited by F. W. J. Olver (University Press, Cambridge, 1960).
- [15] George P. Shpenkov, $MU\Phi$ о спине электрона величиной равной половинке постоянной Дирака (h-bar)/2, 28.01.2017;

http://shpenkov.com/pdf/OrbitalCurrent.pdf

https://www.youtube.com/watch?v=39FR8mBFOgo&

БлагоДарю за внимание!

