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Abstract 

 
Dynamic model of elementary particles (DM) has allowed looking at many physical 

phenomena from a new point of view. This model was developed in the framework of a new 
philosophical approach to foundations of physics - dialectical. As all-embracing, the 
dialectical philosophical approach surpasses the formal logic approach with its limited 
capabilities dominated currently in modern physics. In this paper, the nature of quanta 
observed in the Hall conductivity is elucidated with use of new fundamental parameters 
characteristic of the DM and taking into account the shell-nodal model of atoms developed 
herewith. The primary fundamental parameters of the DM are fundamental frequency of 
exchange (interaction) on the atomic and subatomic levels, ωe, which is unknown yet 
fundamental parameter for modern physics, and an elementary quantum of the rate of the 
exchange, e. 
 
 
 
1. Introduction 
 

The discovery in 1982 by Störmer and Tsui [1] of additional fractional quantized 
resistance values at measurement the Hall conductivity in extremely pure semiconductor 
samples, in strong magnetic field, has come as a great surprise. 

In 1983 Laughlin [2] have succeeded in explanation of the result in terms of new 
quantum states of matter. He put forward a theory according to which the fractional quantum 
Hall effect is caused by the capture of an odd-number of fundamental units of magnetic flux 
by each electron, as opposed to a single unit of flux in the integer quantum Hall effect.  

According to his theory, the low temperature and the powerful magnetic field compel the 
electron gas to condense to form a new type of quantum fluid. Since electrons are most 
reluctant to condense, they first, in a sense, combine with the "flux quanta" of the magnetic 
field. Particularly for the first steps discovered by Störmer and Tsui, the electrons each 
capture three flux quanta, thus forming a kind of composite particle with no objection to 
condensing. 

With this, the quantum Hall effect (QHE) plateaux are formed when the Fermi energy 
lies in a gap of the density of states. The difference is the origin of the energy gaps. While in 
the integer effect gaps are due to magnetic quantization of the single particle motion, in the 
fractional effect the gaps arise from collective motion of all the electrons in the system. 

 Laughlin’s theory, based on his imaginary quantum-mechanical fluid of a new form and 
on a many body wave function, predicted that the elementary excitations involve pseudo-
particle charge carriers with charges that are fractions of the electronic charge. 
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As a result, in spite of difficulties in explanation of a series of details, we have a first 
more or less well abstract-mathematical description of this phenomenon. However, it should 
be stressed, the latter does not quite mean that this theory is true and uniquely possible, and 
that we have obtained perfect understanding of the effect. The study of so-called fractional 
charges (or quasiparticles of fractional charges) and so-called fractional statistics are regarded 
as active fields of research till now. Actual measurements of the Hall conductance have been 
found to be integer or fractional multiples of 𝑒𝑒2/ℎ to nearly one part in a billion. This is why 
the resistance unit ℎ/𝑒𝑒2 is used in resistance calibrations worldwide, and as an extremely 
precise independent determination of the fine structure constant, a quantity of fundamental 
importance in quantum electrodynamics. Thus, the fractional quantum Hall effect remains a 
major topic of research, experimental and theoretical, in low-temperature condensed matter 
physics.  

Precise measurements have shown that an accuracy of quantization of the Hall 
conductivity does not depend on experimental conditions and parameters of samples such as: 
their size, influence of boundaries, a degree of perfection of crystal structures (impurities and 
defects), a type of crystals, temperature, the strength of a measuring current, and etc.  

It means that the nature of the integer and fractional quanta observed in the Hall 
conductivity is defined by only the fundamental parameters of matter characteristic of the 
atomic level. According to the DM, such a parameter is the fundamental frequency of 
exchange (interaction) of the atomic and subatomic levels, ωe. Our studies have shown that all 
physical phenomena that have been already analyzed herein are quite well explained when we 
take into account this fundamental parameter. 

We assume that the fractional quantum conductance observed in the Hall effect (just like 
the integer quantum conductance) must be explained independently of accounting the 
magnetic field by dealing generally with quantum behavior of the electric charge transfer in 
the sample at the atomic level. In this regard, the quantum Hall effect must help in elucidating 
many important aspects of not only quantum but also atomic physics, especially, in view of 
new results obtained in the last 13 years in this field. We mean, first, a discovery of an internal 
structure of atoms due to a new (shell-nodal, molecule-like) atomic model [3]; second, the last 
observation of GHE at room temperature in graphene - a single layer of carbon atoms tightly 
packed in a hexagonal crystal lattice [4]. 

The nature of quantization in the Hall conductance (the resistance quantum) is uncovered 
in this paper as an internal feature of atomic structures, without accounting an influence of 
external magnetic fields. It is a new approach which has become possible due to 
reconsideration of basic concepts of modern physics started in 1996 by the author (with L. 
Kreidik) [3] in order to conform them to dialectical logic and philosophy. As a result of the 
reconsideration, the new concepts were fully developed and generalized currently in 
dialectical physics (that is the physics which is based on dialectical philosophy and logic) [5]. 

We use here new fundamental parameters discovered in the framework of the DM [6]. 
We rest also on the shell-nodal atomic model [7, 8] of dialectical physics [3, 5]. The two 
primary fundamental parameters are: (1) the fundamental frequency of the atomic and 
subatomic levels, ωe; and (2) an elementary quantum of the rate of mass exchange, e, of the 
dimensionality 𝑔𝑔 × 𝑠𝑠−1. The first parameter was completely unknown for modern physics up 
to 1996, the year of publishing the book “Alternative Picture of the World” [3]. The second 
parameter was/is known as the electron charge, but its nature and true value (and hence, true 
dimensionality) were unknown till now. Both above parameters were introduced for the first 
time in the reference book; and they were considered in detail further, mainly in [5].  

The more general notion of exchange, instead of interaction, as the notion naturally 
inherent in the DM, is also used in the paper.  
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2.  The fundamental quantum of specific resistance and the spectrum of 
specific resistances  

 
       One of the main fundamental parameters of the Dynamic Model of Elementary Particles 
(DM) [5, 6, and 9] is a fundamental frequency (or a fundamental time number) of the atomic 
and subatomic levels, ωe: 

𝜔𝜔𝑒𝑒 =
𝑒𝑒
𝑚𝑚𝑒𝑒

= 1.869162505 × 1018 𝑠𝑠−1,                                     (2.1) 

 
where 𝑒𝑒 = 1.702691627 × 10−9 𝑔𝑔 × 𝑠𝑠−1 is the electron charge (an elementary quantum of 
the rate of mass exchange), and 𝑚𝑚𝑒𝑒 = 9.109382531 × 10−28  𝑔𝑔 is the electron mass. 
       The fundamental wave radius e, corresponding to the fundamental frequency 𝜔𝜔𝑒𝑒 , is 
equal to 

𝑒𝑒 =
𝑐𝑐
𝜔𝜔𝑒𝑒

= 1.603886538 × 10−8 𝑐𝑐𝑐𝑐,                                      (2.2) 

 
where 𝑐𝑐 = 2.99792458 × 1010 𝑐𝑐𝑐𝑐 × 𝑠𝑠−1 is the basis speed of exchange of matter-space-time 
at the atomic and subatomic levels (the speed of light c is equal to the above speed).  
       The fundamental radius e and the time number 𝜔𝜔𝑒𝑒 , as a circular frequency, show their 
worth everywhere. The fundamental wave radius defines average atomic diameters and, 
hence, average distances (lattice parameters) in ordered material structures (crystals). The 
fundamental frequency 𝜔𝜔𝑒𝑒  defines, in particular, the quantum of specific resistance of atomic 
spaces. Let us consider this feature in more detail.  
       Ohm’s law in a differential form is presented as 
       

𝑗𝑗 =
1
𝑆𝑆
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 ,                                                                      (2.3) 

or  

𝑗𝑗 =
1
𝜌𝜌𝑒𝑒
𝐸𝐸 = 𝜎𝜎𝑒𝑒𝐸𝐸.                                                          (2.4) 

 
       In a spherical field of the H-atom, the “electric” current density, i.e., the density of current 
of mass exchange, j, is 

𝑗𝑗 =
𝜔𝜔𝑒𝑒𝑒𝑒

4𝜋𝜋𝑟𝑟2 .                                                                (2.5) 
 
The latter can be rewritten in the following form 
      

𝑗𝑗 = 𝜀𝜀0𝜔𝜔𝑒𝑒
𝑒𝑒

4𝜋𝜋𝜀𝜀0𝑟𝑟2 =
1
𝜌𝜌𝑒𝑒
𝐸𝐸.                                                   (2.6) 

 
where  𝜀𝜀0 = 1 𝑔𝑔 × 𝑐𝑐𝑐𝑐−3 is the absolute unit density.  

Thus, going down to the atomic level, we have arrived at a minimal (boundary) value of 
specific resistances, and actually, at the fundamental quantum of specific resistance 
    

𝜌𝜌𝑒𝑒 =
1

𝜀𝜀0𝜔𝜔𝑒𝑒
=
𝑚𝑚𝑒𝑒

𝜀𝜀𝑒𝑒𝑒𝑒
= 5.349991157 × 10−19  μ0 × 𝑠𝑠,                                 (2.7) 

 
where  𝜇𝜇0 = 1/ε0 𝑐𝑐𝑐𝑐3 × 𝑔𝑔−1.  
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From this it follows that the fundamental quantum of specific resistance 𝜌𝜌𝑒𝑒  is a magnitude 
inversely proportional to the product of the fundamental frequency of exchange at the atomic 
(and subatomic) levels, 𝜔𝜔𝑒𝑒 , and the unit density of matter, 𝜀𝜀0, at this (basis) level. 

The dimensionality of 𝜌𝜌𝑒𝑒 , expressed through the absolute units of matter-space-time (g, 
cm, and s), has the form 

 

[𝜌𝜌𝑒𝑒] = �
1

𝜀𝜀0𝜔𝜔𝑒𝑒
� =

1
𝑔𝑔
𝑐𝑐𝑐𝑐3 × 1

𝑠𝑠
       or      [𝜌𝜌𝑒𝑒] =

𝑐𝑐𝑐𝑐3

𝑔𝑔/𝑠𝑠                                 (2.7𝑎𝑎) 

 
from which it follows the physical meaning of 𝜌𝜌𝑒𝑒 .  

Namely 𝜌𝜌𝑒𝑒 , being the magnitude inversely proportional to the rate of mass exchange, g/s, 
per the unit volume of atomic (basis) space, cm3, characterizes by itself the fundamental 
quantum of volume deformation of the atomic (basis) space at the unit rate of wave mass 
exchange of the space. 

The objective measures of resistance of 1Ω and charge of 1𝐶𝐶 [5] are, respectively: 
   

1Ω =
109

4𝜋𝜋𝑐𝑐0
2𝜀𝜀0

 𝑐𝑐𝑐𝑐−1 × 𝑠𝑠 = 8.854187817 × 10−14  𝜇𝜇0  𝑐𝑐𝑐𝑐−1 × 𝑠𝑠                           (2.8) 

and 

1𝐶𝐶 = 1𝐴𝐴 × 𝑠𝑠 =
𝑐𝑐0√4𝜋𝜋

10  𝑔𝑔 × 𝑠𝑠−1 = 1.062736593 × 1010 𝑔𝑔 × 𝑠𝑠−1,                        (2.9) 
  

where 𝑐𝑐0 = 2.99792458 × 1010.   
Hence, the quantum of specific electron resistance is defined by the measures: 

 
    𝜌𝜌𝑒𝑒 = 6.042328514 × 10−6 Ω × 𝑐𝑐𝑐𝑐,                                      (2.10) 
or 
    𝜌𝜌𝑒𝑒 = 5.685628951 × 10−15  𝑚𝑚3 × 𝐶𝐶−1.                                (2.11) 
 
       An average specific resistance of a series of metals at 273 K is congruent with the 
fundamental quantum (2.11). Let us show it. 

The rate of exchange in a spherical field is  
      

𝑣𝑣 =
𝑣𝑣1

𝑍𝑍𝑟𝑟 ,𝑛𝑛
∗ ,                                                                  (2.12) 

where 
𝑧𝑧𝑟𝑟 ,𝑛𝑛
∗ = 𝑍𝑍𝑟𝑟 ,𝑛𝑛

𝑍𝑍𝑟𝑟 ,1
,                                                                (2.13)  

 
and zr,n are roots of Bessel radial functions. The subscript r indicates the order of the Bessel 
functions, and n indicates the number of the root. Therefore, the mass rate of exchange is 
presented by the ratio 

𝑞𝑞 =
𝑒𝑒
𝑍𝑍𝑟𝑟 ,𝑛𝑛
∗                                                                   (2.14) 

and the specific electron resistance as 
 

𝜌𝜌𝑒𝑒 =
1

𝜀𝜀0𝜔𝜔𝑒𝑒
=
𝑚𝑚𝑒𝑒

𝜀𝜀0𝑒𝑒
𝑧𝑧𝑟𝑟 ,𝑛𝑛
∗ = 6.042328514 × 10−6𝑧𝑧𝑟𝑟 ,𝑛𝑛

∗   Ω × 𝑐𝑐𝑐𝑐.                  (2.15) 
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A theoretical spectrum of specific resistances of some metals, obtained by Eq. (2.15), in 
comparison with the experimental data is presented in Table 2.1. 

We see the well agreement of both presented data that confirms the validity of a new 
theoretical concept, realized in the framework of the DM, taken here as the basis for the 
derivation. 

For the radial function of the order 𝑟𝑟 = 1
2
, the wave number 𝑧𝑧𝑟𝑟 ,𝑛𝑛

∗ = 𝑛𝑛  and 
   

𝜌𝜌𝑒𝑒 =
1

𝜀𝜀0𝜔𝜔𝑒𝑒
=
𝑚𝑚𝑒𝑒

𝜀𝜀0𝑒𝑒
𝑛𝑛 = 6.042328514 × 10−6𝑛𝑛  Ω × 𝑐𝑐𝑐𝑐                        (2.16) 

 
where n = 1, 2, 3, …   
 
 
 
Table 2.1. The specific resistances, theoretical and experimental, of some metals 
(𝜌𝜌𝑒𝑒 , 10−6 Ω × 𝑐𝑐𝑐𝑐).  
------------------------------------------------------------------------------ 
𝑧𝑧𝑟𝑟 ,𝑛𝑛
∗ = 𝑍𝑍𝑟𝑟 ,𝑛𝑛

𝑍𝑍𝑟𝑟 ,1
  Element Theory     Experiment 

     Eq. (2.15) [12] 
------------------------------------------------------------------------------   

1  19 K   6.04  6.1       
   28 Ni    6.14 

578.1*
2,2

2
1 =j   76 Os   9.54  9.5    

639.1*
2,2 =j   78 Pt   9.9  9.81  

   46 Pd    9.77  
2  73 Ta   12.08  12.4 
831.1*

2,1 =j   50 Sn   11.07  11.15 
   37 Rb    11.29 

138.2*
3,2 2

1 =j   90 Th   12.92  13 

263.2*
3,2 =j   25 Cr   13.68  14.1 

692.2*
4,2

2
1 =j   41 Nb   16.27  16.1 

477.3*
4,1 =j   92 U   21.02  21 

 3  23 V   18.13  18.2 
13.3*

4,1
2
1 =j   75 Re   18.92  18.9 

   82 Pb    19.2 
299.4*

5,1 =j   33 As   25.98  26 
 5  72 Hf   30.21  30  
   38 Sr    30.3 

94.5*
7,1 =j     5 B   35.9  36 

-----------------------------------------------------------------------------------   
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3.  The fundamental quantum of electron resistance and the spectrum of 
fundamental resistances  

 
The fundamental quantum of specific resistance defines also the fundamental quantum of 

resistance. Let an elementary length be 𝑙𝑙 = 2𝜋𝜋𝜋𝜋, where r is some wave radius. Then, in a 
spherical field, the quantum of resistance is 

 

𝑅𝑅𝑒𝑒 = 𝜌𝜌𝑒𝑒
𝑙𝑙
𝑆𝑆 =

1
𝜀𝜀0

𝑚𝑚𝑒𝑒

𝑒𝑒
2𝜋𝜋𝜋𝜋

4𝜋𝜋𝑟𝑟2 =
2𝜋𝜋𝑚𝑚𝑒𝑒

𝑒𝑒2
𝑒𝑒𝑒𝑒

4𝜋𝜋𝜀𝜀0𝑟𝑟2 =
2𝜋𝜋𝑚𝑚𝑒𝑒𝑣𝑣𝑣𝑣

𝑒𝑒2 ,                          (3.1) 

 
where  

𝑒𝑒
4𝜋𝜋𝜀𝜀0𝑟𝑟2 = 𝑣𝑣                                                              (3.2) 

is the speed-strength. 
In the spherical field 𝑣𝑣𝑣𝑣 = 𝑣𝑣0𝑟𝑟0 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, where 𝑣𝑣0 and 𝑟𝑟0 are the Bohr speed and radius, 

respectively. Hence, 
   

𝑅𝑅𝑒𝑒 =
2𝜋𝜋𝑚𝑚𝑒𝑒𝑣𝑣0𝑟𝑟0

𝑒𝑒2 =
ℎ
𝑒𝑒2 = 2.285514295 × 10−9𝜇𝜇0 𝑐𝑐𝑐𝑐−1 × 𝑠𝑠,              (3.3) 

 
or    

𝑅𝑅𝑒𝑒 =
ℎ
𝑒𝑒2 = 25812.80567 Ω,                                             (3.4) 

 
where h is the Plank constant. 

Thus, the fundamental quantum of resistance 𝑅𝑅𝑒𝑒  is a magnitude depended on the 
fundamental quantum of the rate of mass exchange e, at the atomic (basis) level, and hence, 
on the fundamental frequency, 𝜔𝜔𝑒𝑒 , just like 𝜌𝜌𝑒𝑒 , because they are fundamentally related 
between themselves (see (3.1) and (2.1)). 

The dimensionality of 𝑅𝑅𝑒𝑒 , expressed through the absolute units of matter-space-time (g, 
cm, and s), has the form 

[𝑅𝑅𝑒𝑒] =
𝑐𝑐𝑐𝑐2

𝑔𝑔/𝑠𝑠 .                                                         (3.4𝑎𝑎) 

 
Hence 𝑅𝑅𝑒𝑒 , being the magnitude inversely proportional to the rate of mass exchange, g/s, per 
the unit area of atomic (basis) space, cm2, characterizes by itself the fundamental quantum of 
areal deformation of the atomic (basis) space at the unit rate of wave mass exchange of the 
space. 

In the cylindrical field of exchange, the quantum of resistance is found on the basis of the 
following conditions: 𝑟𝑟𝑛𝑛 = 𝑟𝑟0𝑧𝑧𝑟𝑟 ,𝑛𝑛

∗   and 𝑙𝑙 = 2𝜋𝜋𝑟𝑟0𝑧𝑧𝑟𝑟 ,𝑛𝑛
∗ . In this case 𝑆𝑆 = 𝜋𝜋𝑟𝑟𝑛𝑛2, and an elementary 

quantum of the mass rate of exchange (electron charge) is defined by the expression 𝑒𝑒 =
𝜋𝜋𝑟𝑟0

2𝜀𝜀0𝑣𝑣0 [6]. As a result, we arrive at 
 

𝑅𝑅𝑒𝑒 = 𝜌𝜌𝑒𝑒
𝑙𝑙
𝑆𝑆 =

1
𝜀𝜀0

𝑚𝑚𝑒𝑒

𝑒𝑒
2𝜋𝜋𝜋𝜋0𝑧𝑧𝑟𝑟 ,𝑛𝑛

∗

𝜋𝜋(𝑟𝑟0𝑧𝑧𝑟𝑟 ,𝑛𝑛
∗ )2

𝑣𝑣0

𝑣𝑣0
=
ℎ
𝑒𝑒2

1
𝑧𝑧𝑟𝑟 ,𝑛𝑛
∗ .                                  (3.5) 

 
For the cylindrical function of the order 𝑟𝑟 = 1

2
, the characteristic argument is 𝑧𝑧𝑟𝑟 ,𝑛𝑛

∗ = 𝑛𝑛, 
and the simplest spectrum of resistances will be presented by the following expression: 
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𝑅𝑅𝑒𝑒 =
ℎ
𝑒𝑒2

1
𝑛𝑛 .                                                                (3.6) 

  
Note, the stabilization of Hall resistance (in the Hall quantum effect) is found at the 

values satisfying the fundamental spectrum of resistances (3.5). 
A cross-section S, in the cylindrical field, can be presented by a system of elementary 

channels with the sections 𝑆𝑆𝑛𝑛 = 𝑛𝑛𝑛𝑛𝑟𝑟0
2  and 𝑟𝑟𝑚𝑚 = 𝑟𝑟0𝑧𝑧𝑝𝑝 ,𝑚𝑚

∗ . In such a case 
       

𝑅𝑅𝑒𝑒 =
ℎ
𝑒𝑒2
𝑧𝑧𝑝𝑝 ,𝑚𝑚
∗

𝑛𝑛 .                                                         (3.7) 
 

If 𝑝𝑝 = 1
2
, then 𝑧𝑧𝑝𝑝 ,𝑚𝑚

∗ = 𝑚𝑚, and we arrive at the spectrum of fundamental resistances 
       

𝑅𝑅𝑒𝑒 =
ℎ
𝑒𝑒2
𝑚𝑚
𝑛𝑛 .                                                                 (3.8) 

 
This spectrum is known as a fractional quantization in the Hall conductivity.  
 

 
4. The quantum of specific proton resistance 
 

The proton (H-units) motion in semiconductors is incorrectly interpreted in contemporary 
physics through a theory of the “hole” (positive) conductivity. According to shell-nodal 
atomic model, atoms along with principal nodes, filled with nucleons, have empty collateral 
nodes [5, 7, 8, 10, 11]. The wave motion of H-units in atomic space is realized through 
collateral nodes, where nucleons got into are in nonequilibrium state there. Accordingly, the 
quanta of specific electron resistance 𝜌𝜌𝑒𝑒  must be supplemented with the quanta of specific 
proton resistance 𝜌𝜌𝑝𝑝 . 

Relying on Ohm’s law in a differential form for the nucleon current (i.e., for the current 
of H-units), 

𝑗𝑗𝑝𝑝 =
𝐸𝐸𝑝𝑝
𝜌𝜌𝑝𝑝

      or       𝐼𝐼𝑝𝑝 =
𝐸𝐸𝑝𝑝
𝜌𝜌𝑝𝑝
𝑆𝑆                                                  (4.1) 

 
let us define the specific proton resistance.  
       According to the DM, the nucleon strength is the speed of motion, i.e., 𝐸𝐸𝑝𝑝 = 𝑣𝑣; hence, 
      

𝜌𝜌𝑝𝑝 =
𝑣𝑣
𝐼𝐼𝑝𝑝
𝑆𝑆                                                                          (4.2) 

     
Assuming that an elementary quantum of current is equal to 
 

     𝐼𝐼𝑝𝑝 = 𝜔𝜔𝜔𝜔,                                                                           (4.3) 
 
and sections of a tube of current in this case are 

      
𝑆𝑆 = 𝜋𝜋( 𝑒𝑒𝑧𝑧𝑟𝑟 ,𝑛𝑛)2                                                              (4.4) 

 
the spectrum of specific nucleon resistances is presented in the following form: 
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𝜌𝜌𝑝𝑝 =

𝑣𝑣
𝜔𝜔𝜔𝜔 𝜋𝜋 𝑒𝑒

2𝑧𝑧𝑟𝑟 ,𝑛𝑛
2 .                                                          (4.5) 

Since 
𝑣𝑣
𝜔𝜔 = 𝑟𝑟 = 𝑒𝑒𝑧𝑧𝑟𝑟 ,𝑛𝑛                                                              (4.6) 

we obtain 

𝜌𝜌𝑝𝑝 =
𝜋𝜋 𝑒𝑒

3𝑧𝑧𝑟𝑟 ,𝑛𝑛
3

𝑒𝑒 .                                                               (4.7) 
 

This expression is referred to the oscillatory level of motion, i.e., to the level of 
superstructure. At the basis level, 𝑣𝑣 = 𝑐𝑐 and 𝜔𝜔 = 𝜔𝜔𝑒𝑒 , hence 
      

𝑣𝑣
𝜔𝜔 =

𝑐𝑐
𝜔𝜔𝑒𝑒

= 𝑒𝑒                                                                 (4.8) 

  
Therefore, the specific nucleon resistances of the basis 𝜌𝜌𝑝𝑝𝑝𝑝   have the form 
       

𝜌𝜌𝑝𝑝 =
𝜋𝜋 𝑒𝑒

3𝑧𝑧𝑟𝑟 ,𝑛𝑛
2

𝑒𝑒 .                                                               (4.9) 
 

If an elementary channel of exchange is defined by the wave fundamental radius 𝑒𝑒  
(𝑧𝑧𝑟𝑟 ,𝑛𝑛 = 1), i.e., the processes occur in the wave zone, then the quantum of specific proton 
resistance of both basis and superstructure will be equal to 
   

𝜌𝜌𝑝𝑝 =
𝜋𝜋 𝑒𝑒

3

𝑒𝑒 =
𝜋𝜋 𝑒𝑒

3

𝜔𝜔𝑒𝑒𝑚𝑚𝑒𝑒
= 7.612634088 × 10−15  𝑐𝑐𝑐𝑐3 × 𝑔𝑔−1 × 𝑠𝑠,                           (4.10) 

or 
   

 𝜌𝜌𝑝𝑝 = 8.597777961 × 10−2 Ω × 𝑐𝑐𝑐𝑐 = 8.090221375 × 10−11  𝑚𝑚3 × 𝐶𝐶−1      (4.11) 
 
 
The quantum 𝜌𝜌𝑝𝑝  (4.10) is significantly more than the quantum of specific electron 

resistance 𝜌𝜌𝑒𝑒  (2.11) (see also (2.7)). Comparing the both quanta of specific, proton and 
electron, resistances, we obtain the following relationship 

 

𝜌𝜌𝑝𝑝 =
𝜋𝜋 𝑒𝑒

3𝜀𝜀0

𝑚𝑚𝑒𝑒
𝜌𝜌𝑒𝑒 = 𝜁𝜁𝜌𝜌𝑒𝑒 ,                                                    (4.12) 

 
where the coefficient of proportionality ζ has the fundamental value 

 

𝜁𝜁 =
𝜋𝜋 𝑒𝑒

3𝜀𝜀0

𝑚𝑚𝑒𝑒
= 14229.24613                                        (4.13) 

 
It can serve as a measure of the bond of a nucleon in the external atomic shell.  
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5. The electron and nucleon currents and the Hall effect 
 
Experimentally, the separation of the electron and proton currents in conductors is not a 

simple problem. However, to a definite extent, the Hall effect solves it through an introduction 
of a conductor in a magnetic field B directed perpendicularly to the current (Fig. 5.1). 

The condition of a steady-state transversal potential difference UH is defined by the 
following equalities for the electron and nucleon components, respectively: 
     

𝑒𝑒𝐸𝐸𝑒𝑒𝑒𝑒 =
𝑣𝑣𝑒𝑒𝑒𝑒
𝑐𝑐 𝑒𝑒𝑒𝑒,             𝑒𝑒𝐸𝐸𝑝𝑝𝑝𝑝 =

𝑣𝑣𝑝𝑝𝑝𝑝
𝑐𝑐 𝑒𝑒𝑒𝑒.                                        (5.1) 

  
Assuming at the field levels that 𝑣𝑣𝑒𝑒𝑒𝑒 = 𝐸𝐸𝑒𝑒𝑒𝑒  and 𝑣𝑣𝑝𝑝𝑝𝑝 = 𝐸𝐸𝑝𝑝𝑝𝑝  and performing the 
transformations, 
    

∆𝑈𝑈𝑒𝑒𝑒𝑒 = 𝐸𝐸𝑒𝑒𝑒𝑒𝑎𝑎 =
𝐸𝐸𝑒𝑒𝑒𝑒
𝑐𝑐 𝑎𝑎𝑎𝑎 = 𝜌𝜌𝑒𝑒

𝑗𝑗𝑒𝑒
𝑐𝑐 𝑎𝑎𝑎𝑎 = 𝜌𝜌𝑒𝑒

𝑗𝑗𝑒𝑒𝑎𝑎𝑎𝑎
𝑐𝑐𝑐𝑐 𝐵𝐵 = 𝜌𝜌𝑒𝑒

𝐼𝐼𝑒𝑒
𝑐𝑐𝑐𝑐 𝐵𝐵,                    (5.2) 

 
we obtain an expression for the electron potential difference 
       

∆𝑈𝑈𝑒𝑒𝑒𝑒 = 𝜌𝜌𝑒𝑒
𝛤𝛤𝑒𝑒
𝑏𝑏 𝐵𝐵,                                                          (5.3) 

where  
𝐼𝐼𝑒𝑒
𝑐𝑐 = 𝛤𝛤𝑒𝑒                                                                           (5.4) 

is the electron circulation. 
 
  

 
 
Fig. 5.1.  The voltages and currents in the Hall effect; UH is the transversal potential Hall 

voltage, iUH is the transversal kinetic Hall voltage, Ie is the electron current, Ip is the 
proton current; a and b are the transversal dimensions of a plate. 

 
Analogously, an expression for the nucleon potential difference has the form 

       

∆𝑈𝑈𝑝𝑝𝑝𝑝 = 𝜌𝜌𝑝𝑝
𝛤𝛤𝑝𝑝
𝑏𝑏 𝐵𝐵.                                                        (5.5) 

 
The sum of these voltages defines the total potential (“electric”) Hall voltage: 
 

∆𝑈𝑈𝐻𝐻 = 𝜌𝜌𝐻𝐻
𝛤𝛤
𝑏𝑏 𝐵𝐵,                                                          (5.6) 

where  
     𝛤𝛤 = 𝛤𝛤𝑒𝑒 + 𝛤𝛤𝑝𝑝                                                                 (5.7)   



http://shpenkov.janmax.com/Hall.pdf 
 

10 
 

 
is the total magnetic circulation, and 

𝜌𝜌𝐻𝐻 =
𝜌𝜌𝑒𝑒𝛤𝛤𝑒𝑒 + 𝜌𝜌𝑝𝑝𝛤𝛤𝑝𝑝

𝛤𝛤                                                      (5.8) 
 
is the total specific electron-nucleon resistance, referred to as the Hall coefficient RH; i.e.,  
        

            𝜌𝜌𝐻𝐻 ≡ 𝑅𝑅𝐻𝐻 .                                                                     (5.9) 
        
Usually, the Hall voltage is represented in the form 
       

∆𝑈𝑈𝐻𝐻 = 𝑅𝑅𝐻𝐻
𝐼𝐼𝑚𝑚𝐵𝐵𝑚𝑚
𝑏𝑏                                                        (5.10) 

 
where the subscript m indicates the “current” and induction in a magnetic system of units, 
although actually (it follows from the DM), 𝐼𝐼𝑚𝑚 = 𝐼𝐼

𝑐𝑐
= 𝛤𝛤 is the circulation of the 

dimensionality 𝑔𝑔 × 𝑠𝑠−1 × 𝑐𝑐𝑐𝑐−1. 
 
When  𝜌𝜌𝑒𝑒𝛤𝛤𝑒𝑒 ≪ 𝜌𝜌𝑝𝑝𝛤𝛤𝑝𝑝  and 𝛤𝛤𝑒𝑒 ≪ 𝛤𝛤𝑝𝑝 , then 

 
𝑅𝑅𝐻𝐻 = 𝜌𝜌𝑝𝑝 = 8.597777961 × 10−2 Ω × 𝑐𝑐𝑐𝑐 = 8.090221375 × 10−11  𝑚𝑚3 × 𝐶𝐶−1      (5.11) 

 
For a series of metal spaces (see Table 5.1), the positive Hall effect (the specific proton 

resistance) within mean temperature insignificantly differs from the quantum of the wave 
zone, defined by the equation (5.11) (see also (4.11)). 

 
 

Table 5.1. The Hall coefficients [12] 
------------------------------------------------------------ 
Metal  T, K  𝑅𝑅𝐻𝐻 , 10−11𝑚𝑚3 × 𝐶𝐶−1  
------------------------------------------------------------ 
 Be  290  +7.7 
 Mn  297  +8.4 
 Nb  273  +8.8 
 Ta  273  +9.7 
 V  293  +7.9 
------------------------------------------------------------ 
 
       If the current has mainly a nucleon character, it is very simple to define the relation 
between the Hall coefficient and the specific nucleon resistance. In this case, Eq. (5.6) must be 
presented in the form 
      

𝑈𝑈𝐻𝐻 = 𝑅𝑅𝐻𝐻
𝛤𝛤𝑝𝑝𝐵𝐵
𝑏𝑏 = 𝑅𝑅𝐻𝐻

𝐼𝐼𝑝𝑝𝐵𝐵
𝑐𝑐𝑐𝑐 ,                                                         (5.12) 

where       

𝛤𝛤𝑝𝑝 =
𝐼𝐼𝑝𝑝
𝑐𝑐                                                                             (5.13) 
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is the nucleon circulation. Substituting 𝐼𝐼𝑝𝑝  by the equality 𝐼𝐼𝑝𝑝 = 𝐸𝐸𝑝𝑝 𝑎𝑎𝑎𝑎
𝜌𝜌𝑝𝑝

, originated from Ohm’s 

law (see (4.1)), we have 

𝑈𝑈𝐻𝐻 = 𝑅𝑅𝐻𝐻
𝐸𝐸𝑝𝑝𝑎𝑎𝑎𝑎
𝜌𝜌𝑝𝑝

1
𝑐𝑐                                                             (5.14) 

 
But at the field level, as follows from (5.1), where 𝑣𝑣 = 𝐸𝐸, 
      

𝐸𝐸𝐻𝐻 =
1
𝑐𝑐 𝐸𝐸𝑝𝑝𝐵𝐵                                                                     (5.15) 

Hence, 

𝑈𝑈𝐻𝐻 = 𝑅𝑅𝐻𝐻
𝐸𝐸𝐻𝐻𝑎𝑎
𝜌𝜌𝑝𝑝

 .                                                               (5.16) 

 
And because 𝐸𝐸𝐻𝐻𝑎𝑎 = 𝑈𝑈𝐻𝐻, we arrive at 
    

𝑈𝑈𝐻𝐻 = 𝑅𝑅𝐻𝐻
𝑈𝑈𝐻𝐻
𝜌𝜌𝑝𝑝

            and            𝑅𝑅𝐻𝐻 = 𝜌𝜌𝑝𝑝 .                                   (5.17) 

       
 The kinetic “imaginary” (“magnetic”) Hall voltage, perpendicular to the potential one (shown 
in Fig. 5.1), is equal to the following obvious relationship 
       

     𝑖𝑖𝑈𝑈𝐻𝐻 = 𝑖𝑖𝐸𝐸𝐻𝐻𝑎𝑎                                                                   (5.18) 
 
 
 
6. Conclusion 
 

The DM has allowed looking at many physical phenomena from a new point of view. 
This model was developed in the framework of all-embracing dialectical approach to 
foundations of physics which is a new philosophical basis for physics. The latter will replace 
in future the formal logic approach of limited capabilities dominated currently in modern 
physics.  

The nature of integer and fractional quanta observed in the Hall conductance is uncovered 
in this paper on the basis of the aforementioned dialectical approach applied first to 
foundations of physics. In practice, the new approach is realized through the fundamental 
parameters first discovered in the framework of the DM and with due regard for the shell-
nodal structure of atoms originated from the new approach.  

In particular, one of the main fundamental parameters used here (and, generally, used in 
dialectical physics at the description of all physical phenomena) is the fundamental frequency 
of the atomic and subatomic levels, ωe, which is still unknown parameter for modern physics. 
Another discovered parameter is the fundamental quantum of the rate of mass exchange, e, of 
the dimensionality g × 𝑠𝑠−1, known as the electron charge; its nature and, accordingly, the true 
value and dimensionality were uncovered in the DM.  

Radial solutions of the general wave equation (classical, not Schrödinger’s)  are roots of 
Bessel functions zr,n . They define the spectrum of a possible number, integer or fractional, of 
the quanta, which are observed under specific conditions (magnetic exposure and extremely 
low temperature) in the Hall experiment. 
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All parameters of dialectical physics used in the paper, including the two aforementioned, 
are put together in Table 6.1. 

 
Table 6.1 
 

Parameter Value Dimensionality 
 

The elementary quantum of 
the rate of mass exchange 
(the electron charge), e 

 
𝑒𝑒 = 1.702691627 × 10−9 

 
𝑔𝑔 × 𝑠𝑠−1 

The fundamental frequency of 
the atomic and subatomic 

levels, ωe 

𝜔𝜔𝑒𝑒 =
𝑒𝑒
𝑚𝑚𝑒𝑒

= 

1.869162505 × 1018 
𝑠𝑠−1 

The fundamental wave 
radius, e 

𝑒𝑒 =
𝑐𝑐
𝜔𝜔𝑒𝑒

= 

1.603886538 × 10−8 
𝑐𝑐𝑐𝑐 

The absolute unit density, 𝜀𝜀0 𝜀𝜀0 = 1 𝑔𝑔 × 𝑐𝑐𝑐𝑐−3 

The speed-strength, 𝑣𝑣 = 𝐸𝐸 𝑣𝑣 = 𝐸𝐸 =
𝑒𝑒

4𝜋𝜋𝜀𝜀0𝑟𝑟2 𝑐𝑐𝑐𝑐 × 𝑠𝑠−1 

Roots of Bessel radial 
functions, zp,q 

𝑧𝑧𝑝𝑝 ,𝑞𝑞 =
𝑟𝑟𝑝𝑝 ,𝑞𝑞   

The objective measure of 
resistance, 1Ω 

1Ω =
109

4𝜋𝜋𝑐𝑐0
2  = 

8.854187817 × 10−14  
𝑔𝑔−1 × 𝑐𝑐𝑐𝑐2 × 𝑠𝑠 

The objective measure of 
charge, 1𝐶𝐶 

1𝐶𝐶 =
𝑐𝑐0√4𝜋𝜋

10 = 
1.062736593 × 1010 

𝑔𝑔 × 𝑠𝑠−1 

 
 
In the framework of the Dynamic Model of Elementary Particles (DM), we have obtained 

the formulas and uncovered the nature of the fundamental quanta and corresponding spectra 
related to electron and proton conductivity of solids; they are put together in Table 6.2.  

 
 

Table 6.2 
 

Fundamental quanta and spectra Formulas 
 

The fundamental quantum of specific electron 
resistance 𝜌𝜌𝑒𝑒 =

1
ε0ωe

=
𝑚𝑚𝑒𝑒

𝜀𝜀𝑒𝑒𝑒𝑒
 

The fundamental quantum of specific proton 
resistance 𝜌𝜌𝑝𝑝 =

𝜋𝜋 𝑒𝑒
3

𝑒𝑒  
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The spectrum of specific electron resistances 
 

𝜌𝜌𝑒𝑒 =
𝑚𝑚𝑒𝑒

𝜀𝜀0𝑒𝑒
𝑧𝑧𝑟𝑟 ,𝑛𝑛
∗   

The spectrum of specific proton resistances 
 𝜌𝜌𝑝𝑝 =

𝜋𝜋 𝑒𝑒
3𝑧𝑧𝑟𝑟 ,𝑛𝑛

3

𝑒𝑒  

The fundamental quantum of resistance 
 𝑅𝑅𝑒𝑒 =

ℎ
𝑒𝑒2 

The spectrum of fundamental resistances 
 𝑅𝑅𝑒𝑒 =

ℎ
𝑒𝑒2
𝑚𝑚
𝑛𝑛  

 
 
We see that the nature of the integer and fractional quanta observed in the Hall 

conductivity depends on the fundamental parameters of exchange (interaction) on the atomic 
level: the fundamental frequency of exchange, ωe, and the quantum of the rate of the exchange, 
e, presented above. These parameters were unknown till now in modern physics; they were 
discovered first in the framework of the DM of dialectical physics.  

It should be stressed also that modern physics incorrectly interprets the proton motion in 
semiconductors through the theory of “hole” conductivity. According to the shell-nodal 
atomic model, atoms resemble elementary nucleon molecules which have, along with 
principal nodes filled with nucleons, the empty collateral nodes (not considered here). The 
wave motion of H-units in the atomic space is realized through these empty spatial nodes, 
where nucleons being caught into are, as a rule, in a nonequilibrium state there. Accordingly, 
the quantum of specific electron resistance 𝜌𝜌𝑒𝑒  must be supplemented with the quantum of 
specific proton resistance 𝜌𝜌𝑝𝑝  as has been shown here. The formula of the 𝜌𝜌𝑝𝑝  quantum and the 
corresponding spectrum of 𝜌𝜌𝑝𝑝  are presented in Table 6.2. 

Thus, the nature of integer and fractional quanta observed in the Hall conductance 
(including the resistance quantum) is uncovered in this paper as an internal feature of atomic 
structures, related to wave exchange (interaction) at the atomic level, without accounting an 
influence of external magnetic fields and behind Laughlin’s theory. 
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