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1. Introduction 
 
1.1. The role and place of hybridization in atomic physics and chemistry.  
 

The most of physicists and chemists are aware that quantum mechanics 
(QM) with the group-theory approach [1] to atomic systems elucidate 
theoretically atomic and molecular structure and the nature of Mendeleev’s 
periodic law. This belief in reality of an image of an atom, imposed by the 
modern standard model of elementary particles, lies in the base of the above 
view. 

Hitherto nobody has come into the question on the validity of a pure 
mathematical artificial manipulation with “real” and “imaginary” parts of 
spherical wave functions (atomic orbitals), consisted in making linear 
combinations of them (further mixing for short), which lay in the base of the 
construction of QM atomic model. The legality of linear combinations of wave 
functions is stated by one of the fundamental principles of QM – the 
superposition principle. This manipulation has promoted the development of 
quantum mechanics and quantum chemistry, and led to the invention of 
“electron configuration” of atoms.  

The pure mathematical operation (linear combination) with real and 
imaginary parts was called hybridization of atomic orbitals. Quantum 
mechanics and quantum chemistry cannot do now without this notion, in spite 
of the obvious fact that the hybridization contradicts first of all to the main 
fundamental principle of QM on the probabilistic interpretation of wave 
functions. We will show this here. 

Let us give at the beginning a few examples, taken from the world-wide 
university textbooks and monographs, which show how deeply hybridization 
took roots in the foundation of quantum mechanics and quantum chemistry. 
(The cited below is the present author’s English translation of quotations taken 
from Russian versions of the reference works). 

 

1. The authors, J.N. Murrell, S.F.A. Kettle, and J.M. Tedder, of the book 
“Valence Theory” [2] teach that the azimuth functions of the form )exp( ϕ±im  
have such an imperfection that they cannot be presented in real space. 
However, it is possible to obtain the real functions, which are solutions of the 
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spherical harmonics with the same quantum number l. Operating by this way, 
it is possible to obtain the functions as, for example, 

    ϕθ
π

=+ −+ cossin
2

3)(
2

1
1111 YY ,   (1.1) 

where     
ϕ±

± θ
π

= ieY sin
22
3

11 .     (1.2) 

Further they state that since ϕθ cossin  expresses an angular dependence of x-
component of the radius-vector r (they mean the equalities: ϕθ cossinrx = , 

ϕθ sinsinry = , and θcosrz = ), the linear combination (1.1) is termed the px-
atomic orbital. 
 

2. R.L. Flurry in “Quantum Chemistry” [3] writes that for the qualitative 
description of chemical bonds, it is convenient to express the wave functions 

ϕ±θΘ im
lmnl erR )()(  in the real form if one takes linear combinations of 

degenerated functions, which correspond to the values + m and – m of the 
magnetic quantum number m: 

     ϕθΘ=ψ+ψ=ψ −+ mrR lmnlnlmnlmnlm cos)()()(
2
1)1( ,   (1.3) 

  ϕθΘ=ψ−ψ=ψ −+ mrR
i lmnlnlmnlmnlm sin)()()(

2
1)2( ,  (1.4) 

where   

  ϕ+ θΘ=ψ im
lmnlnlm erR )()( ,  ϕ−− θΘ=ψ im

lmnlnlm erR )()( . (1.5) 

The angular dependence of these functions, e.g., for 1=m , shows that the 

function )1(
nlmψ  is directed along the x-axis and the function )2(

nlmψ  − along the y-
axis in Cartesian coordinates. However, he notes that for these functions m is 
not already the right quantum number (although m  is the right quantum 
number) because every of these functions represents the combination of the 
functions with quantum numbers + m and – m. 

 

3. E. Cartwell and G.W.A. Fowels write (in “Valency and Molecular 
Structure”, Sect 4.6. Angular functions ),( ϕθY ” [4]) that mathematical 
expressions for solutions of the wave equation contain complex functions 
which cannot be easy presented in a graphical form. This is why, and in order 
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to deal with the real solutions, chemists prefer linear combinations of these 
functions presented in the form of “polar” diagrams (which are permissible 
solutions to the wave equation as well). Although, it is impossible to ascribe to 
the functions, obtained in that way, the definite values of m. 

 

4. In the book “Molecular Structure and Dynamics” [5] by W.H. Flagare, 
we find the following instructions: because of impossibility to present orbitals 
in the complex space, one should realize “the transition from the complex basis 
into the real one by the following formulas of matrix transformation”: 
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5. The “angular parts of the wave function Ylm of the hydrogen atom”, 
presented in the explicit form with the corresponding linear combinations (on 
the right) in “The Molecular Structure Theory” by V.I. Minkin, B.Ya. Simkin, 
and R.M. Minaev [6], have the form:  

π
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Let us gain an insight into the meaning of the above cited texts.  

 
1.2. Briefly about conceptual flaws of hybridization.  
 

First, it is not so difficult to find that the concept of mixing (hybridization) 
adopted in QM through the superposition principle is not in concordance with 
the primary principle of QM on the probabilistic interpretation of the wave 
functions. Actually, all presented above manipulations express an elementary 
simple thing, just usage and mixing of real and imaginary terms of the space 
factor ψ̂  of the wave function tier ωϕθψ=Ψ ),,(ˆˆ : 

ϕθΘ=ψ mrR lmnlnlm cos)()(Re ,    (1.8) 
 

ϕθΘ=ψ mrR lmnlnlm sin)()(Im .   (1.9) 
While the hypothetical electron density, determined in quantum mechanics as 

2
nlme ψ , excludes from the probabilistic analysis nlmψRe  and nlmψIm . 

Recognizing a difficulty in the interpretation of complex quantities, quantum 
mechanics assumes that the physical sense has only the modulus squared of the 
wave function 
 

2222* )()(ImRe θΘ=ψ+ψ=ψψ lmnlnlmnlmnlmnlm rR .  (1.10) 

This operation has cost one dear – it made away with the azimuth component 
)(ϕΦm  from the wave function )()()( ϕΦθΘ=ψ mlmnlnlm rR  [7]. In spite of 

this, simultaneously, QM tacitly accepted (under the term the atomic orbitals 
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with “incorrect magnetic numbers”) to use for the “qualitative” analysis the 
squares of nlmψ2Re  and nlmψ2Im .  

Thus, the phrase “the transition from the complex basis into the real 
one…” [5] is the curious one. It means that, in essence, it costs nothing to 
easily leave the world of imaginary shades and to enter in the real world. It is 
very strange because it contradicts the basic concept of quantum mechanics on 
the probabilistic interpretation of the wave function Ψ, introduced in order to 
get rid of unreal (“imaginary”) components.  

Second, a statement about orientation of the functions 
ϕθΘ=ψ mrR lmnlnlm cos)()()1(  and ϕθΘ=ψ + mrR lmnlnlm sin)()()(  along the x- and 

y-axes, respectively [2], is incorrect as well because any atomic system in 
spherical polar coordinates has the only axis of symmetry, namely the polar z-
axis.  

Third, “real” functions ϕθΘ cos)(11  and ϕθΘ sin)(11  (px- and py-orbitals, 
see Fig. 1.1) are linear combinations of complex functions ϕ±θΘ ime)(11 . The 
mixing of these complex functions, contained “real” and “imaginary” 
quantities, together, as it has been done in quantum mechanics, is inadmissible, 
just like it is impossible, e.g., to mix together the electric and magnetic fields 
and then to ascribe to the obtained mixture the properties inherent only in the 
electric field (or, vice versa, only in magnetic). Thus, hybridization as a 
mathematical mixing of qualitatively opposite properties is physically 
impossible and hence unreal. It is merely a mathematical trick used by creators 
of QM at the earliest stage of its building because of the ignorance of the 
physical sense of complex wave functions. 

 

 
 
Fig. 1.1. The −xp  and −yp orbitals of quantum mechanics. 

 
The above statements require the convincing clarification that is the goal of 

this paper. We will show here the inadmissibility of the aforementioned mixing 
of the real and imaginary terms from the physical and philosophical 
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standpoints. We rest mainly on the comprehensive analysis carried out by the 
authors of the work [8]. At the end of this paper we will show the important 
results originated from analyzing hybridization. 

 
 

2. The groundlessness of mixing the real and imaginary terms 
It is not so difficult to come to the conclusion that all above mentioned 

theoretical curvilinear steps are directed to the one goal, namely implicitly to 
legalize the probabilities  
 

  dVdwr
2)(Re ψ=  and  dVdwi

2)(Im ψ= ; (2.1) 
 

whereas, from the beginning, QM distinguishes the only differential of 
probability expressed by the equality 

     dVdw 2ψ= .     (2.2) 

As a result, we have an interesting relation, which has never been discussed 
and which nobody has tried to notice: 

     ir dwdwdVdw +=ψ= 2 .    (2.3) 
 

The question arises: what do the probabilities rdw  and idw  (and their bond 
with the originally postulated probability dw) mean? 

The mathematical operations, given rise to s-, p-, and d-orbitals, were 
directed to an implicit usage not only real but also “imaginary” components of 
complex wave functions ir iψ+ψ=ψ̂ . At that, constant factors of the 
functions are determined on the basis of the following normalization 
conditions:   

  1sin
0

2
, =θθΘ∫

π

dml ,  1
2

0

2
, =ϕψ∫

π

dmr ; 1
2

0

2
, =ϕψ∫

π
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Since Max Born introduced the probabilistic interpretation of the wave 
function [9], till now the “imaginary” parts, regarded as unreal quantities, do 
not have a firm physical interpretation. Let us cite Born’s explanation: “The 
reason for taking the square of the modulus is that the wave function itself 
(because of the imaginary coefficient of the time derivative in the differential 
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equation) is a complex quantity, while quantities susceptible of physical 
interpretation must of course be real” [9, p.142]. 

Before “piling up” the “real” and “imaginary” parts of the complex wave 
function, it is necessary to think about how they are related. What does it mean 
imaginary? Already their names, “real” and “imaginary”, say that we deal with 
the qualitatively opposite properties of wave fields and objects. Such 
properties are unquestioned at the description of all other physical processes 
and phenomena.  

Actually, nobody will add a potential function (e.g., potential energy) to the 
corresponding kinetic function (kinetic energy) and then call the resulting sum 
the potential function (potential energy). It is nonsensical. But why similar 
operations are the norm in QM (and, hence, in quantum chemistry)? 

For example, a complex resistance of the RLC electric circuit has the 
following form 

 

   ( )ω−ω+=++= CLiRXXiRZ CL /1)( .  (2.5) 
 

It is impossible to imagine that someone could regard the “imaginary 
resistances”, iXL and iXc, as unreal quantities. Naturally, the “real” and 
“imaginary” resistances are qualitatively opposite but real features. Such is the 
dialectics of electric circuits. The complex resistance by itself is contradictory 
just like other phenomena of nature.  

The “real” resistance” R is an element of the dispersion of energy at the 
atomic level, whereas the “imaginary” resistances, positive iXL and negative 
iXc, are the elements accumulating, correspondingly, kinetic and potential 
energies of the subatomic level (of “electromagnetic field”). 

When we are interested in an amplitude value of current, the relation 
between current and amplitude of voltage is determined by means of the 
modulus of the total resistance: 
 

   ( )22 /1// ω−ω+== CLRUZUI mmm .  (2.6) 
 

And the modulus of power of the dispersion of energy depends on the modulus 
squared of the total resistance:  

   
( )22
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RU
RIN mm

mm .  (2.7) 
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Of course, the description of the wave field of H-atom on the basis of 
complex numbers is more complicated than the description of the simplest 
circuits. However, one should understand that the “real” and “imaginary” 
components of the polar-azimuth function express qualitatively different wave 
states of atoms and their structural units (like the active and reactive 
resistances in electric circuits or like the “electric” (longitudinal) and 
“magnetic” (transversal) fields, etc.). Unfortunately, it was not realized in 
quantum mechanics. As a result, the “real” and “imaginary” terms of the Ψ -
function are regarded in QM erroneously as qualitatively similar. Accordingly, 
the complicated orbitals built on the basis of mixture of the “real” and 
“imaginary” components (i.e., mathematical mixture of physically immiscible) 
became the basis for the construction of QM models of atoms and molecules.  

Let us consider the above stated from the pure philosophical point of view. 
 
 
3. Logical bases of two different physical models of Nature 

 
The spirit of extreme abstraction, based on ideology of chance and 

indeterminacy, wanders in quantum mechanics. It does not favor uncovering 
the real spatial structure of microobjects. This abstract approach does not 
endure the rigorous critique. In his time Hegel has noted that scientific 
abstraction must be the beginning and the elements, from which the concrete 
images of phenomena and states of nature must be developed; in opposite case 
we deal with abstractionism, which is far from the true science. 

In Nature chance and necessity, definiteness and indeterminacy form 
symmetrical pairs of polar opposite properties of the Universe. Therefore, 
description of phenomena in microworld must not be reduced only to 
probability and indeterminacy. 

In accordance with dialectical logic, foundation of which was laid by 
Hegel, to every affirmative judgment Yes, e.g., chance, possibility, 
definiteness, concreteness, discreteness, symmetry, etc., corresponds the 
symmetrical polar opposite judgment No: necessity, reality, indeterminacy, 
abstractiveness, continuity, asymmetry, etc. 

The symmetry of polar properties, expressed by the binary dialectical 
judgment Yes – No, is the base of dialectical model of the Universe, which 
rests on the basic law of dialectical logic, namely the law of affirmation-
negation (the Yes – No law) [10]. With this, there is no clear boundary 
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between Yes and No: properties Yes continuously and discontinuously 
(discretely) turn to opposite properties No. 

Dialectical symmetry of polar properties of the Universe is a result of the 
formation of the Universe as Being from Non-Being with the zero measure. 
From the metaphysical point of view Non-Being is merely a mathematical 
emptiness, whereas from dialectical point of view Non-Being is another 
existence of Being in the uttermost unstable state of the highest degree of 
continuity, which transients into its opposition – Being. With that, the zero 
measure of Non-Being remains the same measure for Being. This is why to an 
arbitrary set Yes always corresponds, in the whole, the equal and opposite 
quantity No. From this it originates the symmetry of opposite properties of the 
Universe as Being. Being and Non-Being always go alongside, their fields-
spaces intersect. 

By virtue of the above stated it is obvious that we should speak with the 
Universe on the language of dialectical symmetry of oppositions. 

For example, following Einstein, only relative motion exists. But, 
simultaneously, his theory operates with the speed of light, which remains the 
same in all systems of coordinates independently of the relative motions of 
sources and detectors. The last statement means, in the accurate language of 
dialectical logic, that the relativity theory simultaneously implicitly rests on the 
absolute motion of electromagnetic waves and the absolute speed of light. 
Absoluteness of properties means their independence of frames of references. 

The aforementioned logical manipulations are not needed for dialectical 
model of Nature. In dialectical model any motion in the World is regarded as 
the complicated symmetrical complex of absolute-relative motion, Yes – No, 
in which the law of conservation and transformation of absolute-relative 
motion acts. So that to the property of motion Yes = relative responds the 
symmetrical property No = absolute [11]. 

Aristotle’s formal logic, the logic of only Yes or only No, is unable of 
principle to overcome the one-sided view about Nature and therefore cannot 
correctly describe Nature, whereas Hegel’s dialectical logic with the law Yes – 
No is able to do it. 

The formal logic excludes the joining of Yes and No. This is why the 
modern physics is forced to operate by the law of dialectical logic Yes – No in 
implicit form. 

Symmetrical opposite properties of processes and objects of Nature 
demand for their description an introduction of the numerical field of the 
symmetrical structure Yes – No as well, i.e., with the opposite algebraic 
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properties, because only such a numerical field is able to express exactly the 
dialectical judgment Yes – No [12, 13]. 

Thus if for the formal logic and metaphysics it is sufficient the common 
(mono) numerical field, for the dialectical logic and dialectical philosophy (the 
philosophy of symmetrical structure of the Universe) it is necessary the 
symmetrical (binary) numerical field. The essential principles of the binary 
numerical field are the following. 

Obviously, affirmation of affirmation is affirmation; therefore, the unit of 
affirmation 1 follows the algebra of affirmation (Yes-algebra): 

 

   1)1)(1( +=±± ,  1)1)(1( −=±  .   (3.1) 
 

It is natural as well that negation of negation is some affirmation. 
Therefore, the unit of negation 1  follows the algebra of negation (No-algebra), 
which is characterized by the opposite algebra of signs with respect to the Yes-
algebra of signs:  

 

   1)1)(1( −=±± ,  1)1)(1( +=±  .   (3.2) 
 

It is convenient to present the unit of negation 1  by the letter i (imaginary 
number in complex numbers is designated by the same letter), then No-algebra 
takes the form 

 

   1))(( −=±± ii ,  1))(( +=± ii  .   (3.2a) 
 

Obviously, in the field of numbers with negative algebra of signs (3.2a), it 
is possible to extract the square root of negative unit 1−  and impossible of 
the positive unit 1+ . 

The equalities (3.1) and (3.2a) express the basic axioms of dialectical 
judgments and binary numerical field of dialectics (dialectical philosophy and 
logic). 

The units of affirmation and negation give an adequate description of 
symmetrical (polar) properties of the Universe on the basis of dialectical 
functions-judgments Ψ̂  of the logical structure Yes – No: 

     11ˆ ⋅+⋅=Ψ NoYes   
or briefly   

     iNoYes +=Ψ̂ . 
 

The similar description of opposite properties Yes – No is impossible in 
formal logic if we will strictly follow its common rules of only Yes or only No. 
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Here is an example of realization of Yes-algebra. The identical (in sign) 
two charges repeal (the sign “+” in the left equality of (3.1) expresses it) and 
the opposite charges attract (the sign “−“ in the right equality of (3.1) reflects 
it). Such is an objective algebra of central, longitudinal fields of interaction 
(exchange of matter-space-time). 

The next example manifests the realization of No-algebra. Currents of the 
same sign (i.e., the same direction) i±  and i±  attract through their magnetic 
(transversal) fields. The attraction (just like the repulsion) has the central 
character, so that the negative unit of the longitudinal field –1 reflects it. 
Currents of opposite signs, i±  and i , repeal that is expressed by the measure 
+1. 

Euler’s famous formula ϕ+ϕ=ϕ sincos)exp( ii  is valid for the 
symmetrical dialectical numerical field. Therefore, if judgments Yes and No 
vary in course of time with the cyclic frequency ω, then an elementary 
symmetrical alternating dialectical judgment takes the form 

     )sin(cosˆ titm ω+ωΨ=Ψ    (3.3) 
where 

     22 NoYesm +=Ψ  
 

is the modulus of the binary judgment Yes – No. 
The geometry of dialectical judgments (3.3) repeats the geometry of those 

processes and phenomena, which these judgments represent. In other words, 
dialectical judgments, as against the formal logical judgments, present by 
themselves the “logical pictures” of an object of study, which are similar, to a 
definite extent, to art images. 

The symmetry of polar opposite properties is reflected in the binary 
(complex) representation of the properties. This concerns also potential and 
kinetic features of physical phenomena (or processes). Let us proceed now to 
consider these features, because they have the direct relation to complex wave 
function Ψ . 

 
 

4. Symmetry of potential and kinetic fields 
 
Symmetrical potential and kinetic parameters form the binary parameters of 

potential-kinetic fields of every level of matter-space-time [14, 15]. In 
particular, a simple comparison of potential and kinetic energies of harmonic 
oscillations of a material point enables to write them in the symmetrical form 
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  2/2/ 22
pp mkxW υ== , 2/2/ 22

kk mkyW υ== .  (4.1) 
 

The symmetrical parameters of harmonic oscillations, used here, are the 
potential displacement 
      tax ω= cos ,    (4.2) 
 

along with the kinetic displacement 
  

    takmy k ω=υ−= sin/ ,     (4.3) 
and the potential speed 
     xmkxp ω==υ / ,      (4.4) 
along with the kinetic speed  
 

    ytak ω−=ωω−=υ=υ sin .    (4.4a) 
If the kinetic speed (and the kinetic displacement) is the measure of 

intensity of motion and of kinetic energy, then the potential speed (and the 
potential displacement) is the measure of intensity of rest and of potential 
energy. 

The potential and kinetic displacements in an oscillating process [14] form 
the total potential-kinetic displacement Ψ̂  of the form  

 

   tiaetitaiyx ω=ω+ω=+=Ψ )sin(cosˆ .   (4.5) 
 

The potential-kinetic displacement in the harmonic wave field [15], 
including intra-atomic wave fields, has the form 

 

 )(exp))sin()(cos(ˆ krtiakrtikrtaiyx −ω=−ω+−ω=+=Ψ . (4.6) 
 

Time derivative of the potential displacement defines the potential-kinetic 
speed 

 

   pk ixiyi
dt

d
υ+υ=ω+ω−=Ψω=

Ψ
= ˆˆ

V̂ .   (4.7) 
 

The speed (4.6) defines the potential-kinetic momentum, etc. If the kinetic 
speed (and kinetic displacement) is the measure of intensity of motion, then the 
potential speed (and potential displacement) is the measure of intensity of rest. 
Kinetic and potential speeds define the corresponding energies, which, strictly 
speaking, have the opposite signs that point to their opposite character:  
 

 2/2/)( 22 kximW pp −=υ= ,  2/)(2/ 22 iykmW kk −=υ= .  (4.8) 
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Their difference defines the modulus of total energy in a classical sense 
 

    2/2kaWWW pk =−= .    (4.9) 
 

Symmetrical potential-kinetic parameters give the complete description of 
potential-kinetic fields that is impossible in metaphysics and, hence, in 
classical, quantum and wave physics, which were created following Aristotle’s 
logical rules of limited possibilities [14, 15]. The dialectical image of a 
judgment Ψ̂  of the general binary structure 

  

     kp iΨ+Ψ=Ψ̂ ,      (4.10) 
reproduces mathematically the real image and binary character of the original. 
The letter i in Eq. (4.10) designates (as was discussed in the previous section) 
the unit of negation, i.e., points to the qualitatively opposite property kΨ  
(kinetic) with respect to pΨ  (potential).  

Of course, if one chooses the potential displacement tax ω= sin  then the 
kinetic one will be tay ω= cos , etc. Due to this feature, ascribing to either of 
the two displacements the physical sense of “potential” or “kinetic” is a matter 
of taste (or convention). 

In physics, in those cases when the physical meaning of a complex function 
(4.10) is not understood (by a reason) and hence undefined, the imaginary term 

kΨ  is regarded as unreal quantity not “susceptible of physical interpretation”. 
In particular, a misunderstanding of “just what does psi really mean?” (the 
cited expression was taken from an epigram devoted to Schrödinger, which 
was spread among physicists at that time [8, page 130]) gave rise to a nothing-
grounded interpretation of the wave Ψ-function, in quantum and wave 
mechanics, according to which the real physical sense has only its modulus 
squared [7, 16].  

In reality, as proved by all experience of physics and appears from the 
works [8, 10 - 15], “real” and “imaginary” parts of complex wave functions are 
both real. They represent two qualitatively different entities, in particular, the 
potential and kinetic features of the wave process described by the functions.  

Let us turn now to the physical sense of complex spherical harmonics, 
namely polar-azimuth components of the wave functions. But at the beginning 
we elucidate the sense of the wave function itself from our point of view. All 
details concerning the binary numerical field and the physical sense of wave 
functions are in the above cited works. 
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5. The physical meaning of the Ψ  -function 
 

Any physical parameter P̂  of an arbitrary wave field is characterized by its 
particular measure or, in other words, by a period-quantum pk; so that any P̂ -
parameter can be presented by the relative Ψ̂ -measure: 

 

     kpP /ˆˆ =Ψ .     (5.1) 
The relative Ψ̂ -measure of the zero dimensionality of the P̂ -parameter in 

the wave potential-kinetic field of matter-space-time of any nature is the wave 
function of the following general form 

 

   )(ˆ)(ˆ zkykxktt zyx −−−ωΨ=−ωΨ kr .   (5.2) 

Ψ̂ -Function can be presented in the form of the product of its spatial and time 
components: 
 

     )(ˆ)(ˆˆ tT ωψ=Ψ kr .    (5.2a) 
 

The spatial (amplitude) function )(ˆ krψ  defines spatial waves, )(ˆ tT ω  defines 
time waves [15]. Thus, the Ψ̂ -function is a variable wave real potential-kinetic 
binary number describing variations of a P̂ -parameter in space and time. As a 
result the wave structure of any physical parameter P̂  is presented by the 
following scalar measure: 
    )(ˆˆ zkykxktpP zyxk −−−ωΨ= .   (5.3) 

 

If kp  is the momentum of particles of the field, then the expression (5.3) 
describes the wave field of the momentum of particles. 

Any Ψ̂ -parameter satisfies the differential equation with the second partial 
derivatives with respect to spatial coordinates 

 

  Ψ−=
∂

Ψ∂ 2
2

2

xk
x

, Ψ−=
∂

Ψ∂ 2
2

2

xk
x

, Ψ−=
∂

Ψ∂ 2
2

2

xk
x

,  

or            (5.4) 
     Ψ−=∆Ψ 2k ,      
 

where 2222
zyx kkkk ++=  is the wave number squared of a fundamental 

frequency of the field. Ψ̂ -Function satisfies also the equation with the second 
partial derivative with respect to time 



HADRONIC JOURNAL 29, 455-484 (2006) 16 

     Ψω−=
∂

Ψ∂ 2
2

2

t
.     (5.5) 

Equations (5.4) and (5.5) form together the wave equation of the Ψ̂ -function 
 

     01
2

2

2 =
∂

Ψ∂
−∆Ψ

tc
,    (5.6) 

 

where c is the definite base speed of wave processes at the corresponding 
(under consideration) level of matter-space-time. 

 

The sum of elementary solutions of Eq. (5.6) determines the structure of 
the wave field of an arbitrary parameter. Because in any point of a steady state 
wave motion the Ψ̂ -function is represented by the product of its spatial (called 
amplitude as well) )(ˆ krψ  and time )(ˆ tT ω  factors, the wave equation (5.6) 
comes to the amplitude and time equations 

 

     0ˆˆ 2 =ψ+ψ∆ k ,     (5.7) 
 

     T
t
T ˆˆ

2
2

2
ω−=

∂
∂ ,     (5.8) 

 

where the constant parameters k and ω are defined from the boundary 
conditions. 

Equations (5.4) and (5.5) describe Ψ̂ -measures of arbitrary physical 
parameters; therefore, the distinction in their wave structures reduces to the 
difference of kinematic types of wave fields, at the equality of their discrete 
structure. Atomic wave fields-spaces are represented by the spherical-
cylindrical fields. 

Thus, the Ψ̂ -function is the mathematical image of the wave process. Ψ̂ -
Function defines not only the real picture, but also the possible picture of the 
field. Therefore, the Ψ̂ -function is simultaneously a prognostic probabilistic 
picture of the potential-kinetic field. In other words, the wave Ψ̂ -function is 
the natural measure of physical probability of wave processes, but by no means 
the probability of games of chance. By this reason the wave equation (5.7) is 
simultaneously the equation of physical potential-kinetic probability 
(prognosis) Ψ̂  [17]. Let us elucidate now the solution of the wave equation 
(5.7) in outline using the notions stated above. 
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6. The symmetrical potential-kinetic structure of polar-azimuth 
functions 
 
Complex polar-azimuthal functions (spherical harmonics) 
 

  )](exp[)(),( ,,, α+ϕ±θΘΦ=ϕθ miCY mlmmlml   (6.1) 
 

are the particular solutions of polar and azimuthal equations, 
  

  0
sin

)1( ,2

2
,

2
,

2

=Θ








θ
−++

θ

Θ
θ+

θ

Θ
ml

mlml mll
d

d
ctg

d
d

  (6.2) 

 

and    m
m m

d
d

Φ−=
ϕ

Φ ˆ
ˆ

2
2

2

,     (6.3) 
 

to which comes the wave equation  
 

  0
ˆ1ˆ
2

2

2 =
∂

Ψ∂
−Ψ∆

tc
 or 0ˆˆ 2 =Ψ+Ψ∆ k ,   (6.4) 

 

in spherical polar coordinates [8], where the wave number  
 

     
c

k ω
=

λ
π

=
2      (6.4a) 

 

is the constant quantity. In the last equality, ω is the fundamental frequency 
and c is the base speed of exchange of matter-space-time at a given level of 
matter-space-time; at the subatomic level 11810869162.1 −⋅=ω=ω se  and c is 
equal to the speed of light [18]. 

The spherical harmonics (6.1) are also the solutions of Schrödinger’s 
equation of quantum mechanics 
 

 0ˆ)
4

(2ˆ
0

2

2 =Ψ
πε

++Ψ∆
r

ZeWm


, or 0ˆˆ 2 =Ψ+Ψ∆ k .  (6.5) 
 
 

In the latter case, k is the variable quantity dependent on the distance from the 
origin of coordinates, r: 

    )
4

(2

0

2

2 r
ZeWmk
πε

+±=


.     (6.5a) 
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Schrödinger’s equation is usually presented in the following forms 
 

  
t

iU
m ∂

Ψ∂
=Ψ+∆Ψ− 



2

2
    or 

t
iH

∂
Ψ∂

=Ψ ˆ ,  (6.6) 

where 

     U
m

H +∆−=
2

ˆ
2      (6.6a) 

 

is Hamilton’s operator (Hamiltonian), W and 
  

    rZerU 0
2 4/)( πε−=       (6.6b) 

 

are, respectively, total and potential energies of an electron in the field of a 
nucleus of hydrogen-like atoms. A critical analysis of an introduction of the 
variable wave number k (6.5a) in the wave equation by Schrödinger and 
peculiarities of his radial solutions had been carried out in the works [7, 16]. 

A formal introduction of the potential function rZerU 0
2 4/)( πε−=  in the 

wave number k by Schrödinger (while λπ= /2k  and λ cannot continuously 
vary in space in dependence on distance [7]) does not quite mean that the 
polar-azimuth distribution (6.1) has a relation to electrons. As a pure 
mathematical function, (6.1) is not related to the electron potential function 
(6.6b) (or to any other one either).   

The potential-kinetic polar-azimuth function (6.1) consists of two 
elementary polar-azimuth functions, potential and kinetic, which have the 
following form 
 

   )cos()(),( ,,, α+ϕθΘΦ=ϕθ mCY mlmmlpml ,  (6.7) 
  

   )sin()(),( ,,, α+ϕθΘΦ=ϕθ mCY mlmmlkml .    (6.8) 
 

If the normalizing factor of polar-azimuth functions (6.1) is assumed to be 
equal to the numerical unit, these functions are called the reduced functions 
and designated as ),(~

, ϕθΥ ml . 

The reduced potential polar-azimuth functions ϕθΘ=ϕθΥ mmlpml cos)(~),(~
,,  

(for 0=α ) are presented in Table 6.1. Graphs of the potential polar-azimuth 
functions pml ),(, ϕθΥ  (or pml ),(~

, ϕθΥ ) are drawn in Fig. 6.1 (with 
circumferences, defining the cones of extremal values of polar angles). 
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Recall that the wave function Ψ̂  of both solutions, ordinary (6.4) and 
Schrödinger’s (6.5) wave equations, 

  

   kpmll itTYkrR Ψ+Ψ=ωϕθ=Ψ )(ˆ),(ˆ)(ˆˆ
,    (6.9) 

 

contains the same spherical harmonics 
 

  )](exp[)(cos)(ˆ)(),(ˆ
..,, α+ϕ±θ=ϕΦθΘ=ϕθΥ miCPC mmlmlmmlml ,  (6.9a) 

 

where Cl,m and Cm are coefficients depending on the normalizing conditions, 
Pl,m(cosθ) are Legendre adjoined functions, )(ϕΦm  are azimuthal functions, α 
is an initial phase of the azimuthal state. 

 
Table 6.1. The reduced potential polar-azimuth functions ),(~

, ϕθΥ ml  
 
l     m ϕθΘ=ϕθ mY mlml cos)(~),(~

,,                   

 0   0      1 
 1   0      cosθ        5      0    cosθ (cos4θ - 10/9 cos2θ + 5/21) 
       ±1      sinθ cosφ         ±1    sinθ (cos4θ - 2/3 cos2θ + 1/21) cosφ 
 2   0      cos2θ - 1/3             ±2    sin2θ cosθ (cos2θ - 1/3) cos2φ 
       ±1      sinθ cosθ cosφ        ±3    sin3θ (cos2θ - 1/9) cos3φ 
       ±2      sin2θ cos2φ        ±4    sin4θ cosθ cos4φ 
 3   0      cosθ (cos2θ - 3/5)         ±5    sin5θ cos5φ 
       ±1      sinθ (cos2θ - 1/5) cosφ 
       ±2      sin2θ cosθ cos2φ               6      0    cos6θ - 15/11 cos4θ +5/11 cos2θ - 5/231 
       ±3      sin3θ cos3φ             ±1    sinθ cosθ (cos4θ - 10/11 cos2θ +5/33) cosφ 
 4   0      cos4θ - 6/7 cos2θ + 3/35            ±2    sin2θ (cos4θ - 6/11 cos2θ + 1/33) cos2φ 
 ±1      sinθ cosθ (cos2θ - 3/7) cosφ      ±3    sin3θ cosθ (cos2θ - 3/11) cos3φ 
 ±2      sin2θ (cos2θ - 1/7) cos2φ          ±4   sin4θ (cos2θ - 1/11) cos4φ 
 ±3      sin3θ cosθ cos3φ             ±5   sin5θ cosθ cos5φ 
 ±4      sin4θ cos4φ             ±6   sin6θ cos6φ 

 

 
The difference between the general solutions of ordinary (6.4) and 

Schrödinger’s (6.5) wave equations is caused by the difference of their radial 
equations (because of the different wave numbers k, see (6.4a) and (6.5a)), 
which leads to the different radial solutions )(ˆ krRl . We will not show here 
Schrödinger’s radial equation and its solutions, they are analysed in detail in 
[7, 16].  
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Fig. 6.1. Graphs of the potential polar-azimuthal functions ϕθΘ mml cos)(,  
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At integer values of the wave number m, the particular solution of the wave 
equation (6.4) has the standard form. If we present the number m in the form 

sm 2
2
1

= , where Ns ∈ , we arrive at 

  ϕ±±
+

ϕ± θΘρρπ=θΘρ=ψ is
slll

is
slll eHAeRA )()(2/)()(ˆˆ ,

2
1,  (6.10) 

or   
,)())()((2/ˆ ,

2
1

2
1

ϕ±
++

θΘρ±ρρπ=ψ is
sllll eiYJA   (6.11) 

 

where Al is the constant factor; kr=ρ ; )(
2

1 ρ±
+lH , )(

2
1 ρ

+lJ  and )(
2

1 ρ
+lY  (or 

)(
2

1 ρ
+lN ) are the Hankel, Bessel and Neumann functions, correspondingly.  

The form of the function (6.10) uniquely shows that it describes the 
kinematic structure of standing spherical waves in wave physical space. Thus 
the solution (6.11) yields the spatial geometry of disposition of specific points 
(nodes and antinodes) in which the wave Ψ̂ function takes the zero and 
extremal values. With this, polar-azimuthal functions, potential and kinetic, 
define the angular spatial coordinates, respectively, of nodes and antinodes of 
the standing spherical waves, and nothing more. 

Two terms in (6.11) are the potential and kinetic spatial constituents of 
the Ψ̂ -function; they have the following form 
 
  ϕ±

+
θΘρρπ=ρρ=ψ im

mlllp eJAAc )()(2//)(ˆ ,
2

1 ,  (6.12) 
 

  ϕ±
+

θΘρρπ±=ρρ±=ψ im
mlllk eYAAs )()(2//)(ˆ ,

2
1 .  (6.13) 

 
 The half-integer solutions of (6.4), at sml )2/1(== , have the form 
 

    
ϕ±

θΘρ=ψ 2)()(ˆˆ
si

ss eRA ,    (6.14) 
 

where 
    

    )(2/)(ˆ
2
1

2
ρρπ=ρ ±

+sHRs ,    (6.15) 
 

   )
2

sin
2

(cossin)( 22 ϕ±ϕθ=θΘ
ϕ± sisCe

s

s

si

s .  (6.16) 
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We see that the polar extremes of half-integer solutions lie in the equatorial 
plane. 

All spatial components are determined with the accuracy of a constant 
factor A, imposed by boundary conditions, which have no influence on the 
peculiarity of distribution of the nodes on radial spheres. The superposition of 
even and odd solutions defines the even-odd solutions. Odd solutions describe 
the nodes, lying in the equatorial plane of atomic space. In this plane there are 
also solutions in the form of rings in space (graphically shown further) 
separated by radial unstable shells. 

Ψ̂ -Function represents any parameter of the wave field [8] such as, for 
example, potential-kinetic displacement, potential-kinetic speed, physical 
potential-kinetic probability, etc. 

The radial component )(ˆ krRl  of the wave function Ψ̂  (6.9) describes the 
radial field of displacements of the wave parameter, which the Ψ̂ -function 
represents in the wave equation (the density of potential-kinetic phase 
probability in the work [8], in the case of Eq. (6.4)), the polar component 

)(, θΘ ml  describes the polar displacements, and )(ˆ ϕΦ m  describes the azimuth 
displacements. 

Potential and kinetic solutions (6.7) and (6.8) are mutually conjugate 
because the conjugate functions  

 

 kp iΨ+Ψ=Ψ̂    and kppkkp iii )()()(ˆ Ψ+Ψ−=Ψ+Ψ=Ψ  (6.17) 
satisfy the wave equation.  

The potential solutions define the coordinates of rest, whereas the 
conjugate kinetic solutions define the coordinates of maxima of motion. Thus, 
the potential solutions give us the spatial coordinates of equilibrium domains 
(nodes of standing spherical waves) in the wave atomic space.  

From the above it is clear why we should distinguish between the two 
solutions, potential and kinetic, do not mixing them. Rest and motion (nodes 
and antinodes) are the two qualitatively different states of wave processes. 

Now it is obvious as well that the so-called py-orbital of quantum 
mechanics, presented in Fig. 1.1, relates to the kinetic solutions (just like dyz - 
and dxy -orbitals in (1.7)), so that we have no rights to consider the kinetic py-
orbital together with the potential px-orbital, responding to 1=l  and 1=m  (see 
Fig. 6.1). 

Kinetic harmonics are the same, in form, as potential harmonics, but they 
are displaced (turned) in space in the azimuthal direction, around the z-axis, 
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with respect to potential harmonics (just like ϕmcos  with respect to ϕmsin  in 
(6.7) and (6.8)) so that the kinetic extrema are between the corresponding 
potential extrema (as alternated nodes and antinodes in standing waves). 

Basing on the clarification of the nature of the polar-azimuthal functions, 
let us answer now to the following question: what information is actually 
contained in spherical harmonics presented in Fig. 6.1? 

 
 

7. Nodal structure of spherical standing waves in atomic spaces 
 

The form of the radial equation and its solutions )(ˆ krRl  depend on the 
concrete problem, which imposes the definite requirements on the wave 
number k (see (6.4a), (6.5a) and (6.10)).  

However, for any model of an object of study, the radial solutions define 
the characteristic spheres of extrema and zeros of the radial function. For a 
variety of problems, it is sufficient to know at most that such characteristic 
spheres exist. This is why we do not analyze here Schrödinger’s radial equation 
and its solutions: it is not the matter in question of this paper. 

Evidently, the polar and azimuth equations (6.2) and (6.3) are common 
(universal) for all models of objects of study if they are described by the 
general wave equation (6.4). As was mentioned above, Schrödinger’s equation 
(6.5) comes to the same polar and azimuth equations as well.  

Radial solutions )(ˆ krRl  (6.10) are defined by roots of Bessel functions [19, 
20] only in the case of the constant wave number k (6.4a) that distinguishes 
them from Schrödinger’s solutions based on the variable wave number k (6.5a). 
They give the equilibrium spherical shells of standing spherical waves in the 
wave field of potential and kinetic displacements.  

Polar-azimuthal functions (6.1) define polar-azimuthal coordinates of 
nodes and antinodes of standing spherical waves, located on these shells [8].  

Polar components )(, θΘ ml  of the Ψ̂ -function (6.9) define characteristic 
parallels of extrema (principal and collateral) and zeros on radial spheres 
(shells).  

Azimuthal components )(ˆ ϕΦm  define characteristic meridians of extrema 

and zeros. Potential and kinetic polar-azimuthal functions ),(ˆ
, ϕθΥ ml  select 

together the distinctive coordinates of extrema and zeros on the radial shells. 
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Fig. 7.1. Spatial solutions ϕθΘρ=ϕθρψ Ψ CosmRC mllpml )()(),,( ,,  (for 
constr = ) of the wave equation (6.4) for spherical standing waves presented in 

the form indicating the space distribution of potential extrema-nodes (discrete 
elements of the shell-nodal structure of atoms); numbers 1, 2, 3, …, 110 are the 
ordinal numbers of the principal potential polar-azimuth nodes coinciding with 
atomic numbers of the elements Z [8]. 
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The geometry of characteristic states on radial shells is expressed by 
extrema and zeros of the polar-azimuthal components of the Ψ̂ -function.  

The potential solutions of the Ψ̂ -function (for 5,4,3,2,1,0=l ) are 
depicted graphically in Fig. 7.1 for a constant value of the radial coordinate r. 
In this figure, with an example for 5=l  and 2±=m , it is also shown how the 
presented discrete (nodal) structure of the three dimensional wave space is 
obtained from the aforementioned solutions for the different wave numbers l 
and m.  

The graphs of the solutions indicate that there are principle (designated in 
Fig. 7.1 by shaded points) and collateral (designated by the smaller 
unnumbered hollow points) extrema, which determine, correspondingly, stable 
and metastable states of probabilistic events.  

Principal potential polar-azimuthal nodes are numbered in Fig. 7.1 by 
ordinal numbers. The principal polar-azimuth extrema (potential and kinetic, 

0≠m ) mainly define the geometry of radial shells of atomic space, whereas 
collateral extrema ( 0≠m ) play the secondary role. Both principal and 
collateral extrema are points-nodes of the steady-state discrete geometry of the 
wave field of matter-space-time of atoms. 

As it turned out, the shell-nodal structure, presented in Fig. 7.1, is 
reminiscent of spherical resonant cavities [21] (described by Bessel functions 
as well) having internal oscillating electric and magnetic mode fields.  

And what is more, as appears from the comprehensive analysis [8, 13], all 
types of elementary crystal lattices represent, in essence, elementary nodal 
structure of standing waves in a limited three-dimensional wave physical 
space.  

Thus, the spatial shell-nodal structure presented in Fig. 7.1 uniquely 
determines the structure of matter at the atomic and molecular levels, in 
particular, the intra-atomic structure and the structure of crystals [22].  

The quasi-similarity of the geometry of external shells, for the same 
quantum number m and different quantum numbers l, clearly seen from Fig. 
7.1, reveals the nature of Mendeleev’ Periodic Law [8, 22 - 24] and specifies 
the role of electrons in chemical bonds formation [25]. A great body of other 
important consequences, originated from the above solutions, relates to the 
new data concerning the atomic structure, periodicity, symmetries, the nature 
and structure of isotopes [26], etc. These and other relevant data are not the 
matter in question of this paper, they can be found in the reference works of the 
author.  
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8. Conclusion 
 
A series of different notions, touched in this paper, is that minimal ground 

which was necessary for elucidation of the groundlessness of one of the key 
concepts of modern physics, namely hybridization. In this connection, the 
physical nature of the wave Ψ̂ -function and spherical harmonics has been 
elucidated. It was shown that polar-azimuthal factors of the wave function Ψ̂  , 
potential and kinetic, being the solutions of the ordinary wave equation in 
spherical polar coordinates and of Schrödinger’s wave equation, define the 
angular spatial coordinates, respectively, of nodes and antinodes of standing 
spherical waves. 

Dialectical binary numerical field, introduced in the approach presented, 
coinciding in form with the field of complex numbers (lying in the complex 
plane), is the basis for this study. In dialectical numerical field (lying in real 
three-dimensional space), both “real” and “imaginary” terms of complex wave 
functions and, hence, of their constituents, spherical harmonics (polar-
azimuthal functions), are real. They reflect polar opposite, potential and 
kinetic, properties of an object (or a process) of study, which the given 
complex wave function represents and describes.  

Important consequences follow from the analysis brought concisely to light 
in this paper. The erroneousness of the concept of hybridization because of the 
natural unquestionable inadmissibility of abstract mixing of physically 
immiscible is the first of these consequences. The mixing objects are actually 
the qualitatively opposite real features, potential and kinetic (like, for example, 
material and ideal, quantity and quality, form and contents, motion and rest, 
cause and effect, past and future, absolute and relative, wave and quantum, 
etc). Since the hybridization is in the base of the quantum mechanical atomic 
model and quantum chemistry, the above fact naturally calls in question, 
whether do they correctly describe reality? We have the base to doubt in it that 
confirms the similar conclusions obtained in other works on this subject [7, 
16]. 

Obviously, a denial of the legality of “hybridization” amounts to a denial of 
the superposition principle, i.e., the basis of quantum mechanics. Hence, the 
validity of the QM atomic model calls sound doubts. 

Actually, the comprehensive analysis, carried out in the work [8], showed 
that mono-center (mono-nuclear) atomic model rather does not correspond to 
reality. As it turned out, an atom is substantially more complicated that it 
appears from the quantum mechanical atomic model. Atoms are similar to 
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“star” associations of the nucleon world, represented by elementary structural 
units, namely H-atoms (we refer to them protons, neutrons and hydrogen 
atoms) in the composition of complex atoms. 

Although, within the framework of quantum electrodynamics (which was 
developed on the basis of QM by correcting its shortcomings and broadening 
possibilities), most of the experimental facts in atomic physics (after incredible 
efforts undertaken by mathematical physics in the past century) are calculated 
now relatively correctly. However, the last circumstance cannot justify the 
fully developed current status quo in atomic physics and related fields because 
physics must not only to “calculate all the results” [27], but also to 
comprehend nature.  

Any theory initiates an experiment originated from this theory; therefore 
the experiment very often “confirms” such a theory, to a certain degree, 
although this theory maybe does not reflect reality completely (see, for 
example, the work devoted to electron spin [28]). This is why theorists must 
not ignore the fact (noted in his time by Bohr [29]) that the correspondence of 
any theory with the experiment does not quite mean that the given theory is 
true and uniquely possible. And what is more, the possibilities of modern 
mathematics are so impressive that it can present any abstract figment of an 
imagination as a profound theory and fit it to the experiment. Therefore, we 
have the firm ground to state that QM incorrectly describes the atomic 
structure. 

It make sense to say in addition (for the readers interested in this matter) 
that a new atomic theory, some elements of which were concisely touched in 
this paper in connection with the notion of hybridization, is also based on 
dynamic model of elementary particles [18]. The word “dynamic” means that 
the discrete elements of inter- and intra-atomic spaces (just like of elementary 
particles and their constituents) are not static, being in continuous dynamic 
exchange of matter-space-time with all interrelated embedded wave fields-
spaces of the Universe [11]. The new atomic model originated from the new 
atomic theory, called the shell-nodal or multi-center (or molecule like) atomic 
model [30], entirely elucidates a large body of experimental facts of physics 
(including Rutherford’s experiment on scattering of α- and β-particles in 
substance [31]). This model allows also putting and solving the questions 
impossible in the framework of modern atomic theory. 
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