Table of Dimensionalities for Physical Quantities

in objective units (g, cm, s) [1] and Bartini Space-Time System LT (cm, s) [2]

	L^{-2}	L^{-1}	L ⁰	L^1	L^2	L^3	L^4	L^5	L^{6}	
T ⁻⁶	$G=(\omega_{\rm g})^2/4\pi\varepsilon_0$, where $\omega_{\rm g}=9.15814\cdot 10^4 {\rm s}^{-1}$ is the fundamental frequency of gravitational field of elementary particles, $\varepsilon_0=1 g/cm^3$ is the absolute unit density.					$L^{3}T^{-6}$	$L^{4}T^{-6}$	Rate of change of power of exchange, dN/dt g • cm ² • s ⁻⁴	Rate of transfer of power of exchange, N v g • cm³•s⁻⁴	
T ⁻⁵	$\alpha = v_{o}/c$ is the scale correlation between oscillatory and wave speeds in wave processes (v_{o} is limiting oscillatory speed, equal to the first Bohr speed, e is the basis wave speed, equal to the speed of light). $\Delta = 2\pi \lg e$ is Fundamental Period of the Decimal				$L^{2}T^{-5}$	Rate of change of current (electric, dI/dt) $g \cdot s^3$ Sound strength, Irradiance Heat flux density, W/Ss	Rate of change of kinema, dF/dt g · cm · s⁻³	Power of exchange, N=dW/dt ("Power") g • cm²•s⁻³ Heat transfer rate Radiant flux	Rate of transfer of energy, Wv g·cm ³ ·s ⁻³	
T ⁻⁴	Code of the Universe.	L ^o T ^o		Current density, $j=VS$ Specific weight, $\gamma=F/v$ $g \cdot cm^{-2} \cdot s^{-2}$ Rate of change of conductance, dG/dt	Pressure, $P=F/S$ Energy density, W/v $g \cdot cm^{-1} \cdot s^{-2}$ Rate of change of circulation, $d\Gamma/dt$	Rate of change of exchange charge (electric current), I = dq/dt Surface tension	Kinema of exchange, F=qv=m(dv/dt) ("Force") g · cm · s⁻²	Energy, Work, W=Fdl Quantity of heat g · cm²·s⁻² Moment of force. Heat flow	Rate of transfer of action $g \cdot cm^3 \cdot s^{-2}$	
T ⁻³		Acoustic resistance g · cm⁻⁴·s⁻¹	Charge density, q/v Conductivity, σ=1/ρ g · cm³·s⁻¹ Rate of change of angular acceleration: s ³	Surface charge density, q/S Momentum density,mv/v D and H fields Conductance, G=1/R g · cm ⁻² ·S ⁻¹	Circulation, Γ=I/c g · cm⁻¹·s⁻¹ Dynamic viscosity, Ft/S	Exchange charge, q=dg/dt ("electric", "magnetic", and gravitational charge) g · s⁻¹ Mechanical resistance	Dipole moment, qr Magnetic moment,(v/c)qr g · cm · s⁻¹ Momentum, mv	Moment of momentum, mvr (angular momentum, action) $g \cdot cm^2 \cdot s^{-1}$	Moment of action g · cm³·s⁻¹	
T ⁻²		$L^{-1}T^{-2}$	Mass density, m/v g·cm ³ Angular acceleration s ⁻²	Acceleration, a=dv/dt cm · s⁻² Capacitance, C=q/U g · cm⁻²	Absorbed dose (Gy) Specific energy, W/m cm ² · S ⁻² Linear mass density g · cm ⁻¹	Associated mass, m g Rate of change of flux (magnetic, dΦ/dt) cm³·s⁻²	State, mr g • cm	Moment of inertia, mr ² g · cm ²		
T ⁻¹	$L^{-2}T^{-1}$	Inverse value for duration of distance cm⁻¹·s⁻¹	Frequency, v=1/T Ionizing radiations (Bq) s ⁻¹ Rate of change of angular displacement	Speed, v=dl/dt cm ·s⁻¹ Velocity-strength of B and E fields	Potential, Voltage, U=W/q cm² · s⁻¹ Kinematic viscosity Thermal diffusivity	Flux (magnetic, Φ=B·S) cm³·s⁻¹ Volume speed	Rate of volume displacement, vv cm ⁴ ·s ⁻¹			
T ⁰	Specific capacitance, C/m CM ⁻²	Wave number, k=2π/λ. cm⁻¹ Wave discreteness density	Gravitational constant, G g⁻¹·cm³·s⁻² Fine-structure constant, α Fundamental period, Δ	Length, l CM Wave radius, λ/2π=c/ω	Surface area, S cm²	Spatial volume, v cm ³	me, v [1] Kreidik L.G., Shpenkov G.P. Atomic Structure of Matter-Space, Geo. S., Bydgoszcz, 2001			
T^1	$L^{-2}T^{1}$	Inverse value for speed cm ⁻¹ ·s	Time, t Period, T s Volume density flow rate $g^{-1} \cdot cm^3 \cdot s^{-1}$	Duration of distance, lt cm ·s	$L^{2}T^{1}$	[2 Bartini R.O., Kuznetzov P.G. On the geometry multiplicity and physics multiplicity/Problems and peculiarities of modern scientific methodology, Sverdlovsk, Academy of Sciences				
T^2	$L^{-2}T^{2}$	$L^{-1}T^2$	Volume density, v/m g ⁻¹ ·cm ³	$L^{1}T^{2}$	The LT dimension of acceleration of	USSR, Ural Scientific Centre, 1978, pp. 55-65 LT dimensionality of mass $[M]=L^{3}T^{2}$ ($[g]=cm^{3}\cdot s^{-2}$) is interpreted in [2] as "the constancy cceleration of cosmic substance of unit volume and average density guarantees the				
T^3	$L^{-2}T^{3}$	Resistance, R=U/I g ⁻¹ ·cm ² ·s	Resistivity, $\rho = 1/\sigma = RS/1$ (specific resistance) $g^{-1} \cdot cm^3 \cdot s$		<i>conservation of the standard of mass</i> ". It reminds of Kepler's T ² /R ³ law: " <i>the ratio of the squares of the periods of any two planets is equal to the ratio of the cubes of their average distances from the sun</i> "(The Law of Harmonies). Thus Bartini had defined the key for his system.					
T ⁴	$L^{-2}T^{4}$	Inductance, $L=U/(dI/dt)$ $g^{-1} \cdot cm^2 \cdot s^2$			In the LT system, Gravitational constant G is the dimensionless fundamental physical constant just as Fine-Structure constant α and Fundamental Period $\Delta = 2\pi \lg e = 2.7287527$, which are dimensionless in both systems. Copyright © 2010 George P. Shpenkov					