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Abstract. The first precise derivation of the proton’s magnetic moment based on the Dynamic
Model of Elementary Particles (DM), beyond quantum electro- and chromodynamics, is
presented in this paper. Longitudinal and transversal exchange interactions and corresponding
to them longitudinal and transversal exchange charges, originated from the DM, were taken
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1. Introduction

The current experimental value of the proton magnetic moment, according to the 2006
CODATA internationally recommended values, is

n, =1.410606662(37)-107 J-T~". (1.1)
This value is approximately in 1.46 times more than those one for the neutron, which is
u, =-0.96623641(23)-10°J-T". (1.2)

The reason of such a distinction between two observed quantities is not yet clearly
understood by modern physics [1-18]. In our opinion, situation with this issue exists because
contemporary physics, based on the Standard Model (SM), does not know till now the frue
nature of charge of elementary particles, which is responsible for their magnetic properties.
Lacks of the SM are well-known, but all attempts of physicists to improve this model are
unsuccessful. The matter is that the fundamental primordial problem of physics, which is the
problem on the mass and charge nature, cannot be solved in principle by the traditional way
based on formal logic.

A qualitatively new approach in physics based on dialectical logic, developed in the last
decade, solved the problem of mass and charge nature. This was realized in the framework of
the Dynamic Model of Elementary Particles (DM) [19], which is a part of the Dialectical
Model of the Universe. According to the DM, the mass of elementary particles has the
associated character and is the measure of exchange of matter-space-time, and the rest mass
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does not exist. The notion of exchange instead of interaction is one of the principal notions in
the DM. The latter distinguishes the longitudinal exchange and the transversal exchange as
two opposite sides of the process of interaction of particles with surrounding fields and
particles themselves. The longitudinal exchange is characteristic for spherical fields of
particles at rest and motion. The transversal exchange is characteristic for cylindrical fields of
moving particles only.

The rate of mass exchange defines the exchange charge, its dimensionality is g-s~'. Two

notions of exchange charge correspond to two types of exchange: the longitudinal (“electric”)
exchange charge and the transversal (“magnetic”) exchange charge. The transversal charge is
generated during the motion of particles. The central exchange is considered in detail in [19].

A neutron, regarded in the DM as a proton-electron system, unstable in a free state, is an
electrically neutral microformation as a whole in which positive (longitudinal) exchange
charge of the core of the neutron is compensated by the opposite, negative, transversal
exchange charge of an electron being in a state of motion in the system. Accordingly, a
moving neutron does not generate the transversal exchange charge because transversal
exchange is not inherent in neutral particles. And, as in the case of the hydrogen atom, that is
the proton-electron system as well, the constituent electron defines a negative magnetic
moment of the neutron.

A single free proton has longitudinal exchange charge, equal in value to the minimal
quantum of the rate of mass exchange, which is not compensated (as against of the neutron).
Therefore, during motion it generates the transversal charge, which defines the transversal,
magnetic field.

Thus both exchanges and corresponding to them exchange charges, longitudinal and
transversal, define the proton’s magnetic moment. The latter is convincingly shown in this
paper. On the basis of the above concepts, the proton’s magnetic moment is derived with the
high precision in full agreement with the experimental data.

This paper is a natural continuation of the works devoted to the derivation of electron’s
and neutron’s magnetic moments [20, 21] and the Lamb shift in the hydrogen atom [22]
carried out by the author on the basis of the DM. Therefore we will not repeat here in detail
all features of the DM, including the notion of central exchange, which are considered in the
easily accessible reference works.

2. A general formulation for the derivation of the proton’s magnetic
moment

The spectrum of amplitude magnetic moments of nucleons (protons and neutrons) as
dynamic (wave) microformations, in accordance with the DM, is described by the formula

Vg Aél(zps)

H=—g——, 2.1)
C ZP’S
where
A=r, | PR 2.2)
mgyc

is the constant,

& (k) = nkr 12(J 3 k)£, (), (2.3)
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k,=w,/c=1/%,, (2.4)

z =k,r. (2.5)

DS e

Herev, and ry are the Bohr speed and radius, respectively; c is the speed of light; g is the

charge of exchange of the nucleon with environment, g-s_l [19]; A4 is the constant; J(kr)
and Y(kr) are Bessel functions; k. is the wave number; o, is the oscillation frequency of the
pulsating spherical shell of the proton equal to the fundamental “carrier” frequency of the
subatomic and atomic levels; z,, are roots of Bessel functions [23]. The subscript p in z,
indicates the order of Bessel functions and s, the number of the root. The last defines the
number of the radial shell. Zeros of Bessel functions define the radial shells with zero values
of radial displacements (oscillations), i.e., the shells of stationary states.

An elementary quantum of the magnetic moment of a nucleon in a node of the spherical
field is equal to [24]

L
W= 70qu, (2.6)

where 4,, is amplitude with which a nucleon as a whole oscillates in a node of the spherical
wave field of exchange,

A4, =%k, & =2.73065189-107"* ¢m, 2.7)
myc
where
R,=clo, = 1.603886514-107% cm (2.8)

is the wave number, . is the fundamental frequency of the subatomic level,
o, =1.869162534-10" 57", (2.9)

The amplitude 4,, is the characteristic amplitude of oscillations on the sphere of the wave
radius (z,, ; = kr=1).The Rydberg constant is

R 1096775833 em ™. (2.10)

:1+m€/m0

Other  fundamental = quantities used  here are: the proton mass is
m, =1.672621637(83)-10* g, the Planck constant is % = 6.62606896(33)-107*" erg s, and
¢=2.99792458-10" cm-s7".

The exchange charge ¢, being the measure of the rate of exchange of matter-space-time,
or briefly the power of mass exchange, is defined as

where S is the area of a closed wave surface separating the inner and outer space of an
elementary particle, v is the oscillatory speed of exchange at the separating surface, € is the
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absolute-relative density. The exchange charge ¢ and the Coulomb charge gc¢ (presented in the

CGSE units) are related as
q = qc+/4Tme, , (2.12)

where ¢, =1g-cm ~ is the absolute unit density.

The value (2.6) is the main constituent of the magnetic moment of nucleons (both a
neutron and a proton). But in this formula, in the case of the free proton, the total exchange
charge ¢ is equal to the minimal quantum of the rate of (longitudinal) mass exchange and an
additional transversal exchange charge of the positive sign.

At the same time a nucleon, as a dynamic, pulsing microobject in accordance with the
DM, oscillates with respect to its own center of mass with the amplitude (2.2). These
perturbations in motion of a nucleon defined by the amplitude superimpose on the circular
motion of the nucleon. Hence, the second in value term to the nucleon’s magnetic moment
(2.6) is defined (in this case z, ; =z, ) by the following formula

2R
s, = 200 To_ |2RA (2.13)

¢ zp, \|mye

The charge ¢ in (2.13), for the case of a neutron, regarded as a proton-electron system, is
defined by only electron’s exchange charge, so that ¢ = —e, which is mutually balanced with
the opposite in sign central longitudinal proton’s exchange charge.

For the free proton, whose exchange with the surrounding field is not compensated with
the opposite in sign exchange charge of the electron because of the absence of the latter, the
total exchange charge of the proton ¢ is defined by the longitudinal non-compensated positive
exchange charge of the proton, +e, and supplementary associated transversal exchange
charge, Ae ,, generated during its motion:

qg=+e+Ae,. (2.14)
where
+e=1.702691582-10" g-s7". (2.15)

Thus, according to (2.1), the circular wave motion of the proton generates the magnetic
(transversal) moment p (2.6). Small deviations of the motion generate an additional magnetic
moment (2.13), which must be taken into account for the total magnetic moment of the
proton.

The theoretical value of the total magnetic moment of the proton w ,(#) is defined thus

by the following equation

up(rh)=(e+Ae")U°(x +’”0] 2Rn (2.16)
C

e
ZO,s myc

In this formula, the unknown magnitude is the supplementary associated charge of the
proton, Ae,, generated during the non-compensated transversal exchange with environment

of the moving proton. The roots of Bessel functions z,,, which define wave shells of the
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proton, can be easy chosen from a series of roots obtained from solutions of the wave
equation [25]. Other values entered in (2.16) were presented above.
The transversal positive charge Ae, is the unknown earlier, but very important physical

quantity [24]. We will elucidate the notion of transversal exchange directly connected with
the longitudinal exchange, being both the fundamental concepts of the DM. What does the
transversal exchange mean, and hence, what do the transversal associated mass and the
transversal associated charge related to the exchange mean? Let us proceed now to consider
this question in detail.

3. The principal parameters of the wave physical space

According to the DM, the spaces of all levels of the Universe are mutually overlapped,
embedding in each other. With this below laying spaces are the basis spaces for upper laying
levels. The mass of microobjects of a level is regarded as a particular physical spherical point
(like vortices or compressions, efc.) pulsing in space.

In view of this we regard the mass of physical space m as the amount of the physical
space of the embeddedness € defined by the equality

m=¢cV =¢g.g,/, (3.1)

/%

where V' is the volume of the space. The embeddedness € =¢,¢, is, in other words, the

density of the space, where ¢, is the relative density and &, =1 g-cm™ is the absolute unit

density of the space.
If we reduce an amount of space m to the unit embeddedness, we can write (3.1) as

m=¢g,(g)V)=¢,V,, (3.2)
where V = m, because in the above mentioned meaning
g=cm’. (3.3)

For the more accurate description of the wave physical space, we operate with the

kinematic vector-speed E at the level of the basis wave space. To stress its directed character,

one can use the symbol E. The reference dimensionality of the vector-speed E is cm-s ™.

The dynamic vector, conjugate to the kinematic E-vector, is defined as
D=¢E=¢,¢,F. (3.4)

We see that the D-vector is a vector of the density of momentum of physical space with
the embeddedness ¢ ; its dimensionality is (g -cm/s)/cm’.

The vectors D and E are used for the description of longitudinal wave field. The
analogous pair of the vectors, H and B, presents the transversal wave field:

H=¢B=¢,e,B. (3.5)



http://shpenkov.janmax.com/ProtonMagMom.pdf 6

The vectors D and E describe the spherical (“electric”’) wave field of the basis space;
while H and B describe the cylindrical (“magnetic”’) wave field of the same basis space.
Along with the “right” embeddedness €¢=¢,€,, we operate also with the “inverse”

embeddedness:
no =1/¢, and p, =1/¢g,. (3.6)

Then, the equalities (3.4) and (3.5) take the form

E=u,u,D, B=pupuH. 3.7)

We postulate the validity of the equality €, =1 for the basis space. This is quite natural,

because, at this level, the embeddedness, in essence, relates to the space itself, i.e., the self-
embeddedness of the space takes place.

4. Longitudinal-transversal and potential-Kinetic structure of wave fields

In wave field-spaces, the central field-space of exchange is inseparable from its
negation, which is represented by the transversal field-space of exchange [24]. The central
(longitudinal) field of exchange is described by two vectors, E and D, the transversal field is
described by the analogous vectors, B and H. Thus, the B vector is the speed-strength vector
and the H vector is a vector of the density of momentum of the transversal exchange.

Both fields-spaces (central and transversal) form the unit contradictory longitudinal-
transversal field-space with the following vectors:

~

A=E+iB and C=D+iH. (4.1)

In a general case, each vector of exchange (£, D, B, and H) has the contradictory
potential-kinetic character (that is designated by the symbol ") [26, 27]. Therefore, more
correctly, (4.1) must be presented in the following form:

A=E+iB and C=D+iH, (4.2)

where i is the unit of negation of the central field by the transversal field. Thus, the letter i
indicates the transversal character of the field of B and A vectors as against the central field
of E and D vectors. Simultaneously, the letter i indicates the potential character of the
corresponding vectors, as the negation of the kinetic ones, because

E:Ek+iEp, 1§:Bk+in, and ﬁzaosrﬁ, f[zaosré. (4.3)
Obviously,
and
A,=E, +iB,, C,=D,+iH,. 4.5)

Each above vector of exchange belongs to the generalized vector of exchange
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Y=U+iV, (4.6)

AAAAAA

e
AY - =0, 4.7
P (4.7)
which falls into the three scalar equations
2 oty 2
A@V—afxzo, AY, -—"=0, A\Pz—aq}:o. (4.8)
G Yoot ot

The field-space of the vectors of exchange repeats the structure of fields of matter-space-
time, which have the longitudinal-transversal character. The longitudinal-transversal field of

exchange A=E+iB is an image of the longitudinal-transversal structure of the World. At
the subatomic level, it is called the electromagnetic field, in which the field of the transversal
exchange (or more correctly the transversal subfield of the longitudinal-transversal field) is
termed the “magnetic field” and the longitudinal exchange — the “electric field”. The binary
field-spaces are the basis of space of the Universe.

Strictly speaking, the electromagnetic field must be called by only one name: the
“electric” (or “magnetic”) longitudinal-transversal field with the longitudinal-transversal
charges. This is a very important question of logical semantics of the field, which inclines to
the definite concepts [24].

The binary fields-spaces are elementary links in a chain of mutually negating
longitudinal-transversal spaces-fields, which form the multidimensional spatial structure of
matter-space-time of the Universe.

5. The general solution of the cylindrical space

In a case of the spherical field-space of exchange, the structure of every component of the
generalized vector of exchange takes the form

¥y =R (0O, (0D, (9), (5.1)
where k € (x, y,z). The same structure has the vector ¥

¥ =cy R (p)O,, (0)D,,(¢) . (5.2)

The fields of transversal exchange are, mainly, the fields of cylindrical structure. The
presence of a field of the cylindrical structure points to the motion of particles in the field of
matter-space-time.

The transition from the rectangular one to the cylindrical reference space is defined by
the equalities:
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X=rcosQ, y=rsing, z=1z. (5.3)
The cylindrical space is the product of the radial, axial, azimuth, and time wave
subspaces:

¥ = Cy Rk, Z(k,2)D(@)T (1), (5.4)

where C,, is the scale factor, and © = o .

A wave equation for the cylindrical space (in cylindrical coordinates) has the form:

o* o’Y  19*°Y 107 yE P

+ +— + 0, 5.5
ok.z)*  o(k.r)* rokr 1 0p’ ot? (-3)
where k* =k’ + k2. It falls into the time equation,
a’T
+7=0, 5.6
dt’ (56)
and the three spatial equations:
2 2
d22+2=0; d?+m2®20; (5.7)
d(k.z) do
25 > 2
dR2+ L _dRy_m ~|R=0. (5.8)
dtk,r) ke dter) (k)

The product of solutions of these equations determines a general solution for the
cylindrical space:

¥, = CyR, (k,r)e e M@0 it (5.9)
at that
R, (k.r)=~m/2HE(k.r), (5.10)

where HZ(k,r) is Bessel’s function of the third kind, or Hankel’s function, and m is the
order of the function; ¢, is the initial phase of the azimutal wave. Hankel’s function is equal
to the sum (difference) of Bessel’s functions of the first and second kinds, J,, (k,r) and
iN,,(k.r):

HE(k.ry=J(k,r)£iNE(k,r). (5.11)

Bessel’s function of the second kind is also called Neumann’s function. We will call all
above-mentioned functions simply Bessel’s functions.
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In the cylindrical field, the order of the radial function m defines the number of waves,
which are placed on the definite orbit. In a simplest case, only half-wave can be placed on the
orbit. So that such an orbit will be described by the function of the m = %, order. Therefore,

as a solution, we choose the function

T . —i() —ik.z _im,
¥, =A\E(J%(p)+zN%(p))e (20400) gikiz it (5.12)

or
i(ot—kr) . )
Y = Ai e T (5.13)

Jkr

where the initial phase of the azimuth component of the radial divergent wave ¢, is defined

on the basis of the boundary conditions. Naturally, the “radial divergent wave” is not the full
name of the wave, because it represents the wave structure of radial, azimuth, and axial
waves-spaces. The axial wave, represented by the function (5.13), propagates along Z-axis in

the positive direction. The convergent radial wave ‘P; corresponds to the divergent one,
2

i(ot+kr) L )
¥, = Ai————e VTR (5.14)

N

Both waves form the dynamic stationary wave field in the radial direction, expressed
mathematically by the standing radial wave:

coskr-e™ :
Y, =W+ W, =ia—— e V) g (5.15)
u= it Ey o

r

Simultaneously, the ‘¥, -wave is the travelling wave in the azimuth and axial directions,

positive with respect to the Z-axis:

() =ia SOSE gmitivro gitorko) (5.16)

Jir

The corresponding wave, travelling in the negative direction, is

_ coskr :
W, | =ig o= o0t pilertkez) (5.17)
( A) \/E

Both waves form the standing wave in the radial and axial directions:

ki .
v, =ia&kre’%°+%> cosk,z- e . (5.18)
r

However, in the azimuth direction, it is the travelling wave along the electron orbit. If we are
not interested in the description of the axial wave, we can omit the axial component and to
consider only the radial-azimuth subspace:
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coskr ;
W, =ig e o 20100 . et (5.19)
s Nkr

As far as the distance » from the axial line increases, Bessel’s function (5.11) is
approximately described by the following formula

HE(kr) s ———e™*" (5.20)

In this case, the radial multiplicative component of the cylindrical space (5.10) takes the form
R(p) = 4e*™ / Jp , (5.21)

R i EJ

where A= Ae ( 2 % and p=k.r=r/k, is an argument of the cylindrical function

(expressed through the wave radii), defining the expansion of space in the radial direction.
The argument of the radial function cannot have a zero value. Its magnitude is restricted

by some minimal radius of the axial line (or a tube of current), which represents the physical

wave trajectory of motion of a particle in a cylindrical wave process.

Under the constant flow of energy through the cylindrical surface, the expression (5.21) is
a strict one.

The definite cylindrical wave surface corresponds to every value of the argument. The
extremes and nulls of potential and kinetic components of the radial function define the
cylindrical surfaces of the potential and kinetic extremes and nulls. The potential-kinetic
cylindrical shells are between these surfaces.

6. Associated mass and exchange charge of transversal exchange

As follows from (5.13) and (5.21), the density of oscillatory-wave energy (or pressure) in
the cylindrical field-trajectory, at the constant mean power of energy flow in a radial
direction, has the form [24]

Pm

"

Let the speed of transversal exchange is defined (like at longitudinal exchange) as

expi(ot—k,r). (6.1)

0 =v(k,r)expiot, (6.2)

where k, =k = o/c is the wave number corresponding to the fundamental frequency of the

field of exchange w.
Like for the spherical field-space [19], the following relation is valid for the cylindrical
field-space:
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k. 0p

r

g0, im 0(k,r)

O=-— (6.3)

On the basis of the above equalities, we get that the density of oscillatory-wave energy at
the wave characteristic surface of the radius « is defined by the following equality

IO (1 2k, ai)ied. (6.4)

Hence, the power of field exchange at a section of cylindrical surface of the length /,
S =2mnal, related to the cylindrical field around a trajectory of the moving proton, in our case
(with allowance for d0/dt = im0) will be:

4na’l C
psz’w—‘%gg(l—zk,ai)@, (6.5)
1+ 4(k,a) dt
or
do
S =m—, 6.5a
p 7 (6.5a)
where
4 2 3
_ 4ma lgosr2 _ik, 8na laosr2 (6.6)
1+4(k.a) 1+ 4(k,a)
is the associated field mass at transversal exchange.
An equation of the transversal exchange in the radial direction has the form
do
m,—=F—pS, 6.7
0 p (6.7)

where my is the rest mass of the particle; F expresses some additional exchange — the power
of exchange with an object in the ambient space.

Replacing pS by the equality (6.5), we arrive at the equation of exchange, i.e., in

essence, at the common equation of motion accepted in physics from Newton’s times in the
form

Ana’l
Mg+t 0 D Ro=F. (6.8)
1+4(k,a)* ) dt
In this equation,
4na’l
R = 2k, a0 —= 207 (6.9)
1+4(k,a)

is the coefficient of wave resistance, or the dispersion of rest-motion at transversal exchange.

The equation of powers of exchange (6.8) is presented thus in a classical form of
Newton’s second law, describing the motion in the field-space with the resistance R. At such a
description, the expression in brackets represents the effective mass m of the particle:
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4na’l
m=my - C0Er (6.10)
1+ 4(k a)

Eq. (6.5a) describes exchange of motion. However, we are interested in the mass
exchange, which is defined by exchange charges (2.11). In this case, the field component of
mass exchange (6.5a) has to be presented in the following form:

pS=a;:0 or  pS=00, (6.11)

where Q is the active-reactive charge of exchange. Then, Eq. (6.8) takes the form

4ral
my 0 4 AMANEE o po— (6.12)
dt 1+ 4k a)

where v = wa is the speed at the cylindrical surface. The tangential field of exchange, which
is negation of the longitudinal field of exchange E (see Sect. 3 and Sect. 4), is described by
the speed-strength vector B (3.7), which is equal therefore to

B=i0, (6.13)
where i is the unit (“indicator’’) of negation. Thus, we have

my @0 4 ATAVEE p pe p (6.14)
dt 1+4(k,a)
or

moif;+qTB+R0=F. (6.15)

It should recall again that elementary particles of the DM are pulsing microobjects, so
that their masses have associated character. Accordingly, the notion of the rest mass is not
appropriate for such microobjects of principle Thus, we accept that in the transversal field of
exchange, as in the spherical one, the rest mass of a particle my is equal to zero.

Thus, we arrive at the following formula for the associated transversal mass m, and the
associated transversal charge q.(at €, =1):

2
m, = 47“171802 , (6.16)
1+ 4(k a)
4. = om 4nalvg, (6.17)

"t dtka)

We will use now these formulas for the final derivation of the magnetic moment of a proton.
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7. Magnetic moment of the proton

Motion of a proton has the wave character and represents a cylindrical ray-wave.
Therefore, we must take into account the supplementary associated charge and mass
generated at the transversal exchange in the cylindrical field. The supplementary associated
mass of the ray element / is defined by the formula (6.16).

An element / of the ray can be defined by the following way. According to the approach
developed in [24], we have to recognize that the elementary quantum of the rate of mass
exchange e exists in the four states:

+e, -e, +ie, -ie (7.1)

The first two quanta have relation to the longitudinal (“electric”) exchange, the rest two —
to the transversal (“magnetic”’) exchange. An elementary transversal magnetic charge-flux at
the level of the Bohr radius 7y is

ei =vig,S = 2nrylive, (7.2)

where g, =1g-cm™ is the absolute unit density, e =1.702691582-10” g-s™' is the charge
of exchange of the proton with environment equal in magnitude to the electron exchange
charge, and 7, = 0.52917720859-10"° cm is the Bohr radius. Hence, the element / of the ray-
wave is defined from the equality (7.2) as

=—¢% (7.3)
2nryvg,
Under the condition v = ¢, the value of / is minimal and equal to:
I=— %  —1708182574-10"2 cm . (7.4)
2nryce,

Hence, the supplementary associated transversal mass of the proton, Am,, defined from
(6.16), is
_Amrle,

m, = TR =4.187602162-10 * g, (7.5)
e’ 0

The exchange charge in the DM [19, 24], g =dm/dt (2.11), is regarded as the rate of

mass exchange; its amplitude value is equal to the product of the associated mass by the
fundamental frequency of exchange at the subatomic level o,

q =mm (7.6)

Hence, the supplementary associated charge Ae,, corresponding to the mass (7.5), is equal to
Ae, = Am,o, =7.827309069 107" g-57'. (7.7)

Thus, the total charge of exchange of the proton wave shell with environment is
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q=e+Ae, =2.485422489-107 g-s'. (7.8)

Let us turn now to the formula (2.16) and choose the root of Bessel functions zy; entered
in the second term of this expression. Similar as in the case of the derivation of the neutron’s
magnetic moment, we select the radial solution near the twelfth wave shell. Owing to the
more uncertainty, we take the average value of the two nearest roots z, , namely

ag,; =32.95638904, equal to an extremum of the eleventh potential spherical shell, and
Yoo =35.34645231, which is equal to the zero of the twelfth kinetic shell.

Under all above conditions, the formula (2.16) for the proton’s magnetic moment takes
the form

w, (th) =

(e+Aep)Uo( , (7.9)
C

ag +

A, +r, ( 0,1,1 Yo12) | [2Rh
2(“0,11)’0,12) myc

where v, = ac =2.187691254-10° cm - s~ (a. is the fine-structure constant [28]).

The substitution of all numerical values for quantities entered in (7.9) yields the
following theoretical values for the total magnetic moment of the proton and its two
constituents:

n, (th) = (4.952571882+0.04790508144) - 10 g -cm - s~ =

(7.10)
=5.000476963-10 " g-cm-s~'
In the SI units, since 17 =10% /+/47 cm-s™", Equality (7.10) is rewritten as
w, (th) = (1.397094734 +0.0135137738)- 107 J - T = .11

=1.410608508-10° J - T

Thus, we have obtained the theoretical value p,, which practically coincides with the
current “2006 CODATA recommended value” (1.1) accepted for the magnetic moment of the
proton. The absolute coincidence of the obtained theoretical value (7.11) with the averaged
experimental (recommended) value (1.1) is easily achieved if one introduces a small empirical
coefficient 1/B for the second term. Such an adjustment is justified in the framework of the
approach accepted here, because it corrects indeterminacy in the weight contribution each of
two selected shells (roots of Bessel functions). The coefficient 1/B takes into account this
circumstance.

Thus finally, the formula for the magnetic moment of the proton (7.9) takes the form

. (th) =

e 0
B 2(%,11)’0,12) myc

e+Ae v A
( ») 0[7L . 1(00,11 yo,u)} 2Rh (7.12)
c

At B =1.000136546, we arrive at
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u,(th) = (1.397094734 + 0.013511928) - 10°°J.T" =

e p , (7.13)
=1.410606662-10" J -T

i.e., at the complete coincidence of the experimental value of the magnetic moment of the
proton (1.1) with theoretical (7.13).

8. Conclusion

Thus for the first time a precise derivation of the proton’s magnetic moment is realized in
physics beyond DED and QCD theories. This result has been achieved due to taking into
account the wave behaviour of the proton in the framework of the Dynamic Model of
Elementary Particles.

Along with the previous derivation of electron’s and neutron’s magnetic moments [20,
21], and the Lamb “shifts” in the hydrogen atom [22], this work is the next stringent test for
the validity of the concepts on the associated nature of mass of elementary particles and the
exchange nature of charges regarded as the rate of mass exchange of the dimensionality

g-s_l.
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