
http://shpenkov.janmax.com/ProtonMagMom.pdf 1

Derivation of the Proton’s Magnetic Moment 
beyond QED and QCD Theories 

 
G. P. Shpenkov 

 
Academy of Computer Science and Management,  

Legionow 81, 43-300 Bielsko-Biała, Poland 
shpenkov@janmax.com 

March 14, 2008 
 
Abstract. The first precise derivation of the proton’s magnetic moment based on the Dynamic 
Model of Elementary Particles (DM), beyond quantum electro- and chromodynamics, is 
presented in this paper. Longitudinal and transversal exchange interactions and corresponding 
to them longitudinal and transversal exchange charges, originated from the DM, were taken 
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including the derivation of electron’s and neutron’s magnetic moments, confirm the 
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1. Introduction 

 
The current experimental value of the proton magnetic moment, according to the 2006 

CODATA internationally recommended values, is 
   
    12610)37(410606662.1 −− ⋅⋅=µ TJp .   (1.1) 

 
This value is approximately in 1.46 times more than those one for the neutron, which is 
 
    12610)23(96623641.0 −− ⋅⋅−=µ TJn .   (1.2) 

 
The reason of such a distinction between two observed quantities is not yet clearly 

understood by modern physics [1-18]. In our opinion, situation with this issue exists because 
contemporary physics, based on the Standard Model (SM), does not know till now the true 
nature of charge of elementary particles, which is responsible for their magnetic properties. 
Lacks of the SM are well-known, but all attempts of physicists to improve this model are 
unsuccessful. The matter is that the fundamental primordial problem of physics, which is the 
problem on the mass and charge nature, cannot be solved in principle by the traditional way 
based on formal logic. 

A qualitatively new approach in physics based on dialectical logic, developed in the last 
decade, solved the problem of mass and charge nature. This was realized in the framework of 
the Dynamic Model of Elementary Particles (DM) [19], which is a part of the Dialectical 
Model of the Universe. According to the DM, the mass of elementary particles has the 
associated character and is the measure of exchange of matter-space-time, and the rest mass 
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does not exist. The notion of exchange instead of interaction is one of the principal notions in 
the DM. The latter distinguishes the longitudinal exchange and the transversal exchange as 
two opposite sides of the process of interaction of particles with surrounding fields and 
particles themselves. The longitudinal exchange is characteristic for spherical fields of 
particles at rest and motion. The transversal exchange is characteristic for cylindrical fields of 
moving particles only. 

The rate of mass exchange defines the exchange charge, its dimensionality is 1−⋅ sg . Two 
notions of exchange charge correspond to two types of exchange: the longitudinal (“electric”) 
exchange charge and the transversal (“magnetic”) exchange charge. The transversal charge is 
generated during the motion of particles. The central exchange is considered in detail in [19].  

A neutron, regarded in the DM as a proton-electron system, unstable in a free state, is an 
electrically neutral microformation as a whole in which positive (longitudinal) exchange 
charge of the core of the neutron is compensated by the opposite, negative, transversal 
exchange charge of an electron being in a state of motion in the system. Accordingly, a 
moving neutron does not generate the transversal exchange charge because transversal 
exchange is not inherent in neutral particles. And, as in the case of the hydrogen atom, that is 
the proton-electron system as well, the constituent electron defines a negative magnetic 
moment of the neutron.  

A single free proton has longitudinal exchange charge, equal in value to the minimal 
quantum of the rate of mass exchange, which is not compensated (as against of the neutron). 
Therefore, during motion it generates the transversal charge, which defines the transversal, 
magnetic field.  

Thus both exchanges and corresponding to them exchange charges, longitudinal and 
transversal, define the proton’s magnetic moment. The latter is convincingly shown in this 
paper. On the basis of the above concepts, the proton’s magnetic moment is derived with the 
high precision in full agreement with the experimental data. 

This paper is a natural continuation of the works devoted to the derivation of electron’s 
and neutron’s magnetic moments [20, 21] and the Lamb shift in the hydrogen atom [22] 
carried out by the author on the basis of the DM. Therefore we will not repeat here in detail 
all features of the DM, including the notion of central exchange, which are considered in the 
easily accessible reference works.  

 
 

2. A general formulation for the derivation of the proton’s magnetic 
moment  
 
The spectrum of amplitude magnetic moments of nucleons (protons and neutrons) as 

dynamic (wave) microformations, in accordance with the DM, is described by the formula 
 

     
sp

spl

z
zeA

q
c ,

,0 )(ˆυ
=µ ,    (2.1) 

where 
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hRrA
0

0
2

=      (2.2) 

is the constant,    
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±π= ,   (2.3)  
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     eee ck D/1/ =ω= ,    (2.4) 
 
     rkz esp =, .     (2.5) 
 
Here 0υ  and r0 are the Bohr speed and radius, respectively; c is the speed of light; q is the 

charge of exchange of the nucleon with environment, 1−⋅ sg  [19]; A is the constant; )(krJ  
and )(krY  are Bessel functions; ke is the wave number; ωe is the oscillation frequency of the 
pulsating spherical shell of the proton equal to the fundamental “carrier” frequency of the 
subatomic and atomic levels;  zp,s are roots of Bessel functions [23]. The subscript p in zp,s 
indicates the order of Bessel functions and s, the number of the root. The last defines the 
number of the radial shell. Zeros of Bessel functions define the radial shells with zero values 
of radial displacements (oscillations), i.e., the shells of stationary states. 

An elementary quantum of the magnetic moment of a nucleon in a node of the spherical 
field is equal to [24] 

     mqA
c
0υ

=µ ,     (2.6) 

 
where Am is amplitude with which a nucleon as a whole oscillates in a node of the spherical 
wave field of exchange,  

   cm
cm

RhA em
12

0

1073065189.22 −⋅== D ,   (2.7) 

where  
   cmc ee

810603886514.1/ −⋅=ω=D     (2.8) 
 
is the wave number, ωe is the fundamental frequency of the subatomic level, 
 
    11810869162534.1 −⋅=ω se .    (2.9) 
 
The amplitude Am is the characteristic amplitude of oscillations on the sphere of the wave 
radius ( 1, == krz sp ).The Rydberg constant is 
 

    1

0
5833.109677

/1
−∞ =

+
= cm

mm
RR

e
.  (2.10) 

 
Other fundamental quantities used here are: the proton mass is 

gm 24
0 10)83(672621637.1 −⋅= , the Planck constant is sergh ⋅⋅= −2710)33(62606896.6 , and 

1101099792458.2 −⋅⋅= scmc . 
The exchange charge q, being the measure of the rate of exchange of matter-space-time, 

or briefly the power of mass exchange, is defined as 
 

     υε== S
dt
dmq ,    (2.11) 

 
where S is the area of a closed wave surface separating the inner and outer space of an 
elementary particle, υ  is the oscillatory speed of exchange at the separating surface, ε is the 
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absolute-relative density. The exchange charge q and the Coulomb charge qC (presented in the 
CGSE units) are related as 
     04πε= Cqq ,    (2.12) 
 
where 3

0 1 −⋅=ε cmg  is the absolute unit density. 
The value (2.6) is the main constituent of the magnetic moment of nucleons (both a 

neutron and a proton). But in this formula, in the case of the free proton, the total exchange 
charge q is equal to the minimal quantum of the rate of (longitudinal) mass exchange and an 
additional transversal exchange charge of the positive sign.  

At the same time a nucleon, as a dynamic, pulsing microobject in accordance with the 
DM, oscillates with respect to its own center of mass with the amplitude (2.2). These 
perturbations in motion of a nucleon defined by the amplitude superimpose on the circular 
motion of the nucleon. Hence, the second in value term to the nucleon’s magnetic moment 
(2.6) is defined (in this case ssp zz ,0, = ) by the following formula 

 

    
cm

Rh
z
r

c
q

s 0,0

00
1

2υ
=δµ .    (2.13) 

 
The charge q in (2.13), for the case of a neutron, regarded as a proton-electron system, is 

defined by only electron’s exchange charge, so that eq −= , which is mutually balanced with 
the opposite in sign central longitudinal proton’s exchange charge. 

For the free proton, whose exchange with the surrounding field is not compensated with 
the opposite in sign exchange charge of the electron because of the absence of the latter, the 
total exchange charge of the proton q is defined by the longitudinal non-compensated positive 
exchange charge of the proton, e+ , and supplementary associated transversal exchange 
charge, pe∆ , generated during its motion: 

 
     peeq ∆++= .     (2.14)  

where  
1910702691582.1 −− ⋅⋅=+ sge .   (2.15) 

 
Thus, according to (2.1), the circular wave motion of the proton generates the magnetic 

(transversal) moment µ (2.6). Small deviations of the motion generate an additional magnetic 
moment (2.13), which must be taken into account for the total magnetic moment of the 
proton. 

The theoretical value of the total magnetic moment of the proton )(thpµ  is defined thus 
by the following equation 
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+

υ∆+
=µ D .   (2.16) 

 
In this formula, the unknown magnitude is the supplementary associated charge of the 

proton, pe∆ , generated during the non-compensated transversal exchange with environment 
of the moving proton. The roots of Bessel functions sz ,0 , which define wave shells of the 
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proton, can be easy chosen from a series of roots obtained from solutions of the wave 
equation [25]. Other values entered in (2.16) were presented above.  

The transversal positive charge pe∆  is the unknown earlier, but very important physical 
quantity [24]. We will elucidate the notion of transversal exchange directly connected with 
the longitudinal exchange, being both the fundamental concepts of the DM. What does the 
transversal exchange mean, and hence, what do the transversal associated mass and the 
transversal associated charge related to the exchange mean? Let us proceed now to consider 
this question in detail. 

 
 
 

3. The principal parameters of the wave physical space 
 

According to the DM, the spaces of all levels of the Universe are mutually overlapped, 
embedding in each other. With this below laying spaces are the basis spaces for upper laying 
levels. The mass of microobjects of a level is regarded as a particular physical spherical point 
(like vortices or compressions, etc.) pulsing in space. 

In view of this we regard the mass of physical space m as the amount of the physical 
space of the embeddedness ε defined by the equality 

 
     VVm r 0εε=ε= ,    (3.1) 

 
where V is the volume of the space. The embeddedness 0εε=ε r  is, in other words, the 

density of the space, where rε  is the relative density and 3
0 1 −⋅=ε cmg  is the absolute unit 

density of the space. 
If we reduce an amount of space m to the unit embeddedness, we can write (3.1) as 
 

      00 )( VVm rr ε=εε= ,     (3.2) 
 
where V0 = m, because in the above mentioned meaning 
 
      3cmg = .       (3.3) 

 
For the more accurate description of the wave physical space, we operate with the 

kinematic vector-speed E at the level of the basis wave space. To stress its directed character, 
one can use the symbol E. The reference dimensionality of the vector-speed E is 1−⋅ scm . 

The dynamic vector, conjugate to the kinematic E-vector, is defined as 
 

      EED r 0εε=ε= .      (3.4) 
 
We see that the D-vector is a vector of the density of momentum of physical space with 

the embeddedness ε ; its dimensionality is 3/)/( cmscmg ⋅ . 
The vectors D and E are used for the description of longitudinal wave field. The 

analogous pair of the vectors, H and B, presents the transversal wave field: 
 

      BBH r 0εε=ε= .      (3.5) 
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The vectors D and E describe the spherical (“electric”) wave field of the basis space; 
while H and B describe the cylindrical (“magnetic”) wave field of the same basis space. 

Along with the “right” embeddedness 0εε=ε r , we operate also with the “inverse” 
embeddedness: 
     00 /1 ε=µ  and rr ε=µ /1 .     (3.6) 
 
Then, the equalities (3.4) and (3.5) take the form 
 
    DE r 0µµ= ,  HB r 0µµ= .    (3.7) 

 
We postulate the validity of the equality 1=ε r  for the basis space. This is quite natural, 

because, at this level, the embeddedness, in essence, relates to the space itself, i.e., the self-
embeddedness of the space takes place. 
 
 
4. Longitudinal-transversal and potential-kinetic structure of wave fields 
 

In wave field-spaces, the central field-space of exchange is inseparable from its 
negation, which is represented by the transversal field-space of exchange [24]. The central 
(longitudinal) field of exchange is described by two vectors, E and D, the transversal field is 
described by the analogous vectors, B and H. Thus, the B vector is the speed-strength vector 
and the H vector is a vector of the density of momentum of the transversal exchange. 

Both fields-spaces (central and transversal) form the unit contradictory longitudinal-
transversal field-space with the following vectors: 

 
  iBEA +=ˆ   and  iHDC +=ˆ .   (4.1) 
 
In a general case, each vector of exchange (E, D, B, and H) has the contradictory 

potential-kinetic character (that is designated by the symbol ^) [26, 27]. Therefore, more 
correctly, (4.1) must be presented in the following form: 

 
  BiEA ˆˆˆ +=   and  HiDC ˆˆˆ += ,   (4.2) 
 

where i is the unit of negation of the central field by the transversal field. Thus, the letter i 
indicates the transversal character of the field of B̂  and Ĥ  vectors as against the central field 
of E and D vectors. Simultaneously, the letter i indicates the potential character of the 
corresponding vectors, as the negation of the kinetic ones, because 
 
 pk iEEE +=ˆ ,      pk iBBB +=ˆ ,   and   ED r

ˆˆ
0εε= ,     BH r

ˆˆ
0εε= .  (4.3) 

 
Obviously,  
   kkk iBEA += , kkk iHDC +=    (4.4) 
and 
   ppp iBEA += , ppp iHDC += .   (4.5) 
 
Each above vector of exchange belongs to the generalized vector of exchange 
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      iVU +=Ψ̂ ,      (4.6) 
 

where )ˆ,ˆ,ˆ,ˆ,ˆ,ˆ(ˆ CAHDBE∈Ψ . This vector satisfies the wave equation 
 

     0
ˆˆ
2

2
=

τ∂

Ψ∂
−Ψ∆ ,    (4.7) 

which falls into the three scalar equations 

 0
ˆ

ˆ
2

2

=
τ∂
Ψ∂

−Ψ∆ x
x , 0

ˆ
ˆ

2

2

=
τ∂

Ψ∂
−Ψ∆ y

y , 0
ˆˆ
2

2

=
τ∂
Ψ∂

−Ψ∆ z
z .   (4.8) 

 

The field-space of the vectors of exchange repeats the structure of fields of matter-space-
time, which have the longitudinal-transversal character. The longitudinal-transversal field of 
exchange BiEA ˆˆˆ +=  is an image of the longitudinal-transversal structure of the World. At 
the subatomic level, it is called the electromagnetic field, in which the field of the transversal 
exchange (or more correctly the transversal subfield of the longitudinal-transversal field) is 
termed the “magnetic field” and the longitudinal exchange – the “electric field”. The binary 
field-spaces are the basis of space of the Universe. 

Strictly speaking, the electromagnetic field must be called by only one name: the 
“electric” (or “magnetic”) longitudinal-transversal field with the longitudinal-transversal 
charges. This is a very important question of logical semantics of the field, which inclines to 
the definite concepts [24].  

The binary fields-spaces are elementary links in a chain of mutually negating 
longitudinal-transversal spaces-fields, which form the multidimensional spatial structure of 
matter-space-time of the Universe. 

 
 

5. The general solution of the cylindrical space 
 
In a case of the spherical field-space of exchange, the structure of every component of the 

generalized vector of exchange takes the form 
 
    )(ˆ)()(ˆˆ

, ϕΦθΘρ=Ψ mmllkk Rc ,    (5.1) 
 
where ),,( zyxk ∈ . The same structure has the vector Ψ̂  
  

    )(ˆ)()(ˆˆ
, ϕΦθΘρ=Ψ Ψ mmllRc .    (5.2) 

 

The fields of transversal exchange are, mainly, the fields of cylindrical structure. The 
presence of a field of the cylindrical structure points to the motion of particles in the field of 
matter-space-time. 

The transition from the rectangular one to the cylindrical reference space is defined by 
the equalities: 
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    ϕ= cosrx ,  ϕ= sinry ,  zz = .   (5.3) 
 

The cylindrical space is the product of the radial, axial, azimuth, and time wave 
subspaces: 

     )(ˆ)(ˆ)(ˆ)(ˆˆ τϕΦ=Ψ Ψ TzkZrkRC zr ,    (5.4) 
 

where Cψ is the scale factor, and tω=τ . 

A wave equation for the cylindrical space (in cylindrical coordinates) has the form: 

 

   0
ˆˆ1ˆ1

)(
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)(

ˆ
2

2
2
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2

2
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2

2

2

2
=
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∂
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+
∂

Ψ∂
+

∂
Ψ∂ k

rrkrrkzk rrz

,   (5.5) 

 

where 222
zr kkk += . It falls into the time equation, 

       0ˆˆ
2

2

=+
τ

T
d

Td ,     (5.6) 

and the three spatial equations: 
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The product of solutions of these equations determines a general solution for the 
cylindrical space: 

    tiimzik
rmm eeerkRC z ωϕ+ϕ−−

Ψ=Ψ )( 0)(ˆˆ ,    (5.9) 
at that 

     )(ˆ2/)(ˆ rkHrkR rmrm
±π= ,     (5.10) 

 

where )(ˆ rkH rm
±  is Bessel’s function of the third kind, or Hankel’s function, and m is the 

order of the function; 0ϕ  is the initial phase of the azimutal wave. Hankel’s function is equal 
to the sum (difference) of Bessel’s functions of the first and second kinds, )( rkJ rm  and 

)( rkiN rm : 

     )()()(ˆ rkiNrkJrkH rmrmrm
±±± ±= .    (5.11) 

 

Bessel’s function of the second kind is also called Neumann’s function. We will call all 
above-mentioned functions simply Bessel’s functions. 
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In the cylindrical field, the order of the radial function m defines the number of waves, 
which are placed on the definite orbit. In a simplest case, only half-wave can be placed on the 
orbit. So that such an orbit will be described by the function of the 2

1=m  order. Therefore, 
as a solution, we choose the function 

 

    tiziki eeeiNJA z ω−ϕ+ϕ−ρ+ρ
π

=Ψ )( 02
1

2
1

2
1

2
1 ))()((

2
   (5.12) 

or 

     ziki
krti

zee
kr

eAi −ϕ+ϕ−
−ω

+ =Ψ )(
)(

02
1

2
1 ,    (5.13) 

 
where the initial phase of the azimuth component of the radial divergent wave 0ϕ  is defined 
on the basis of the boundary conditions. Naturally, the “radial divergent wave” is not the full 
name of the wave, because it represents the wave structure of radial, azimuth, and axial 
waves-spaces. The axial wave, represented by the function (5.13), propagates along Z-axis in 
the positive direction. The convergent radial wave −

2
1Ψ  corresponds to the divergent one, 

 

     ziki
krti

zee
kr

eAi −ϕ+ϕ−
+ω

− =Ψ )(
)(

02
1

2
1   .    (5.14) 

 
Both waves form the dynamic stationary wave field in the radial direction, expressed 

mathematically by the standing radial wave: 
 

    ziki
ti

zee
kr

ekria −ϕ+ϕ−
ω

−+ ⋅
=Ψ+Ψ=Ψ )( 02

1

2
1

2
1

2
1

cos .   (5.15) 

 
Simultaneously, the 

2
1Ψ -wave is the travelling wave in the azimuth and axial directions, 

positive with respect to the Z-axis: 
 

     ( ) )()( 02
1

2
1

cos zktii zee
kr
kria −ωϕ+ϕ−+ =Ψ .   (5.16) 

 
The corresponding wave, travelling in the negative direction, is 
 

     ( ) )()( 02
1

2
1

cos zktii zee
kr
kria +ωϕ+ϕ− =Ψ .   (5.17) 

 
Both waves form the standing wave in the radial and axial directions: 
 

     ti
z

i ezke
kr
kria ωϕ+ϕ ⋅=Ψ coscos )( 02

1

2
1 .   (5.18) 

 
However, in the azimuth direction, it is the travelling wave along the electron orbit. If we are 
not interested in the description of the axial wave, we can omit the axial component and to 
consider only the radial-azimuth subspace: 
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     tii ee
kr
kria ωϕ+ϕ ⋅=Ψ )( 02

1

2
1

cos .    (5.19) 

 

As far as the distance r from the axial line increases, Bessel’s function (5.11) is 
approximately described by the following formula 

 

    rik

r

mi

rm
re

rk
erkH ±







 π

+
π

± ≈
42

)(ˆ .    (5.20) 

 
In this case, the radial multiplicative component of the cylindrical space (5.10) takes the form 
 
    ρ≈ρ ρ± /ˆ)(ˆ ieAR ,     (5.21) 

where 






 π

+
π

= 42ˆ
mi

AeA , and rr rrk D/==ρ  is an argument of the cylindrical function 
(expressed through the wave radii), defining the expansion of space in the radial direction. 

The argument of the radial function cannot have a zero value. Its magnitude is restricted 
by some minimal radius of the axial line (or a tube of current), which represents the physical 
wave trajectory of motion of a particle in a cylindrical wave process. 

Under the constant flow of energy through the cylindrical surface, the expression (5.21) is 
a strict one. 

The definite cylindrical wave surface corresponds to every value of the argument. The 
extremes and nulls of potential and kinetic components of the radial function define the 
cylindrical surfaces of the potential and kinetic extremes and nulls. The potential-kinetic 
cylindrical shells are between these surfaces. 

 

 

6. Associated mass and exchange charge of transversal exchange  
 
As follows from (5.13) and (5.21), the density of oscillatory-wave energy (or pressure) in 

the cylindrical field-trajectory, at the constant mean power of energy flow in a radial 
direction, has the form [24] 

    )(expˆ rkti
rk

p
p r

r

m −ω= .    (6.1) 

 
Let the speed of transversal exchange is defined (like at longitudinal exchange) as 
 
    tirkr ωυ=υ exp)(ˆ ,     (6.2) 
 

where ckkr /ω==  is the wave number corresponding to the fundamental frequency of the 
field of exchange ω. 

Like for the spherical field-space [19], the following relation is valid for the cylindrical 
field-space: 



http://shpenkov.janmax.com/ProtonMagMom.pdf 11

    
)(

ˆˆ
0 rk

p
i

k

rr

r

∂
∂

ωεε
−=υ .     (6.3) 

 
On the basis of the above equalities, we get that the density of oscillatory-wave energy at 

the wave characteristic surface of the radius a is defined by the following equality 
  

    υω−
+

εε
= ˆ)21(

)(41
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r .   (6.4) 

 
Hence, the power of field exchange at a section of cylindrical surface of the length l, 

alS π= 2 , related to the cylindrical field around a trajectory of the moving proton, in our case 
(with allowance for υω=υ ˆ/ˆ idtd ) will be: 
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or 
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dmSp υ
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where 
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εεπ
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+

εεπ
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is the associated field mass at transversal exchange. 

An equation of the transversal exchange in the radial direction has the form 
 

     SpF
dt
dm ˆˆˆ

0 −=
υ ,    (6.7) 

 

where m0 is the rest mass of the particle; F̂  expresses some additional exchange – the power 
of exchange with an object in the ambient space.  

Replacing Sp̂  by the equality (6.5), we arrive at the equation of exchange, i.e., in 
essence, at the common equation of motion accepted in physics from Newton’s times in the 
form 

     FR
dt
d

ak
la

m
r

r ˆˆˆ
)(41

4
2

0
2

0 =υ+
υ









+

εεπ
+ .    (6.8) 

In this equation,  

    2
0

2

)(41
4

2
ak

la
akR

r

r
r

+

εεπ
ω=     (6.9) 

 
is the coefficient of wave resistance, or the dispersion of rest-motion at transversal exchange. 

The equation of powers of exchange (6.8) is presented thus in a classical form of 
Newton’s second law, describing the motion in the field-space with the resistance R. At such a 
description, the expression in brackets represents the effective mass m of the particle: 
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    2
0

2

0 )(41
4

ak
la

mm
r

r

+
εεπ

+= .    (6.10) 

 
Eq. (6.5a) describes exchange of motion. However, we are interested in the mass 

exchange, which is defined by exchange charges (2.11). In this case, the field component of 
mass exchange (6.5a) has to be presented in the following form: 

 

   υ= ˆˆˆ
dt
mdSp   or υ= ˆˆˆ QSp ,   (6.11) 

  

where Q̂  is the active-reactive charge of exchange. Then, Eq. (6.8) takes the form 
 

    FRi
ak

al
dt
dm

r

r ˆˆˆ
)(41

4ˆ
2

0
0 =υ+υ

+
ευεπ

+
υ ,   (6.12) 

 

where aω=υ  is the speed at the cylindrical surface. The tangential field of exchange, which 
is negation of the longitudinal field of exchange E (see Sect. 3 and Sect. 4), is described by 
the speed-strength vector B (3.7), which is equal therefore to 
 
     υ= ˆˆ iB ,     (6.13)  
 
where i is the unit (“indicator”) of negation. Thus, we have 
 

    FRB
ak

al
dt
dm

r

r ˆˆˆ
)(41

4ˆ
2

0
0 =υ+

+
ευεπ

+
υ    (6.14) 

or 

    FRBq
dt
dm ˆˆˆˆ

0 =υ++
υ

τ .    (6.15) 

 
It should recall again that elementary particles of the DM are pulsing microobjects, so 

that their masses have associated character. Accordingly, the notion of the rest mass is not 
appropriate for such microobjects of principle Thus, we accept that in the transversal field of 
exchange, as in the spherical one, the rest mass of a particle m0 is equal to zero.  

Thus, we arrive at the following formula for the associated transversal mass mτ and the 
associated transversal charge qτ (at 1=ε r ): 
 

    2
0

2

)(41
4

ak
la

m
r+
επ

=τ ,     (6.16) 

 

    2
0

)(41
4

ak
almq

r+
υεπ

=ω= ττ .    (6.17) 

 
We will use now these formulas for the final derivation of the magnetic moment of a proton. 
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7. Magnetic moment of the proton 
 
Motion of a proton has the wave character and represents a cylindrical ray-wave. 

Therefore, we must take into account the supplementary associated charge and mass 
generated at the transversal exchange in the cylindrical field. The supplementary associated 
mass of the ray element l is defined by the formula (6.16).  

An element l of the ray can be defined by the following way. According to the approach 
developed in [24], we have to recognize that the elementary quantum of the rate of mass 
exchange e exists in the four states: 

 
    +e, -e, +ie, -ie    (7.1) 
 
The first two quanta have relation to the longitudinal (“electric”) exchange, the rest two – 

to the transversal (“magnetic”) exchange. An elementary transversal magnetic charge-flux at 
the level of the Bohr radius r0 is 

     000 2 υεπ=ευ= lirSiei ,   (7.2) 
 
where 3

0 1 −⋅=ε cmg  is the absolute unit density, 1910702691582.1 −− ⋅⋅= sge  is the charge 
of exchange of the proton with environment equal in magnitude to the electron exchange 
charge, and cmr 8

0 1095291772085.0 −⋅=  is the Bohr radius. Hence, the element l of the ray-
wave is defined from the equality (7.2) as 
 

     
002 υεπ

=
r
el .     (7.3) 

 
Under the condition c=υ , the value of l is minimal and equal to: 
 

    cm
cr

el 12

00

10708182574.1
2

−⋅=
επ

= .  (7.4) 

 
Hence, the supplementary associated transversal mass of the proton, pm∆ , defined from 

(6.16), is 

   g
rk

lr
m

e
p

28
2

0
2

0
2

0 10187602162.4
41

4 −⋅=
+

επ
=∆ ,    (7.5)  

 
The exchange charge in the DM [19, 24], dtdmq /=  (2.11), is regarded as the rate of 

mass exchange; its amplitude value is equal to the product of the associated mass by the 
fundamental frequency of exchange at the subatomic level ωe, 
 

     emq ω= .     (7.6) 
 
Hence, the supplementary associated charge pe∆ , corresponding to the mass (7.5), is equal to 
 

   11010827309069.7 −− ⋅⋅=ω∆=∆ sgme epp .   (7.7) 
 
Thus, the total charge of exchange of the proton wave shell with environment is  
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   1910485422489.2 −− ⋅⋅=∆+= sgeeq p .    (7.8) 
 
Let us turn now to the formula (2.16) and choose the root of Bessel functions z0,s entered 

in the second term of this expression. Similar as in the case of the derivation of the neutron’s 
magnetic moment, we select the radial solution near the twelfth wave shell. Owing to the 
more uncertainty, we take the average value of the two nearest roots sz ,0 , namely 

95638904.3211,0 =′a , equal to an extremum of the eleventh potential spherical shell, and 
34645231.3512,0 =y , which is equal to the zero of the twelfth kinetic shell.  

Under all above conditions, the formula (2.16) for the proton’s magnetic moment takes 
the form 

  
cm

Rh
ya
ya

r
c
ee

th e
p

p
012,011,0

12,011,0
0

0 2
)(2
)()(

)( 









′

+′
+

υ∆+
=µ D ,  (7.9) 

 
where 18

0 10187691254.2 −⋅⋅=α=υ scmc  (α is the fine-structure constant [28]). 
The substitution of all numerical values for quantities entered in (7.9) yields the 

following theoretical values for the total magnetic moment of the proton and its two 
constituents: 

 

 
123

123

10000476963.5

10)40479050814.0952571882.4()(
−−

−−

⋅⋅⋅=

=⋅⋅⋅+=µ

scmg

scmgthp   (7.10) 

 
In the SI units, since 14 4/101 −⋅π= scmT , Equality (7.10) is rewritten as 
 

 
126

126

10410608508.1

10)0135137738.0397094734.1()(
−−

−−

⋅⋅=

=⋅⋅+=µ

TJ

TJthp    (7.11) 

 
Thus, we have obtained the theoretical value µp, which practically coincides with the 

current “2006 CODATA recommended value” (1.1) accepted for the magnetic moment of the 
proton. The absolute coincidence of the obtained theoretical value (7.11) with the averaged 
experimental (recommended) value (1.1) is easily achieved if one introduces a small empirical 
coefficient 1/β for the second term. Such an adjustment is justified in the framework of the 
approach accepted here, because it corrects indeterminacy in the weight contribution each of 
two selected shells (roots of Bessel functions). The coefficient 1/β takes into account this 
circumstance.  

Thus finally, the formula for the magnetic moment of the proton (7.9) takes the form 
 

  
cm

Rh
ya
ya

r
c
ee

th e
p

p
012,011,0

12,011,0
0

0 2
)(2
)(1)(

)( 









′

+′

β
+

υ∆+
=µ D   (7.12) 

 
At 000136546.1=β , we arrive at  
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126

126

10410606662.1

10)013511928.0397094734.1()(
−−

−−

⋅⋅=

=⋅⋅+=µ

TJ

TJthp ,  (7.13) 

 
i.e., at the complete coincidence of the experimental value of the magnetic moment of the 
proton (1.1) with theoretical (7.13). 

 
 

8. Conclusion 
 

Thus for the first time a precise derivation of the proton’s magnetic moment is realized in 
physics beyond DED and QCD theories. This result has been achieved due to taking into 
account the wave behaviour of the proton in the framework of the Dynamic Model of 
Elementary Particles.  

Along with the previous derivation of electron’s and neutron’s magnetic moments [20, 
21], and the Lamb “shifts” in the hydrogen atom [22], this work is the next stringent test for 
the validity of the concepts on the associated nature of mass of elementary particles and the 
exchange nature of charges regarded as the rate of mass exchange of the dimensionality 

1−⋅ sg .  
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