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The foundations of quantum mechanics are analyzed, and some problems that appeared during its crea-

tion and remain unsolved today are emphasized.  It is shown that the introduction of variable wave number k, 
depending on electron coordinates, and the omission of the azimuth part of the wave function   ̂  ψ , were erro-
neous.  Including the azimuth factor of the wave function and taking into consideration the constant value of k 
result in wave-equation solutions showing a discrete nodal structure of intratomic space, and arrives at a peri-
odic-nonperiodic law for behavior of atomic structures.  Viewing atoms as quasi-spherical neutron molecules 
makes it possible to understand characteristic features of the periodic table. 
PACS Numbers: 03.65.Bz, 03.65.Ge 

1.  Introduction 
In the first decades of the 20th century, classical mechanics 

met with problems in the description of motion at the microlevel, 
creating the necessity to develop equations of motion on the ba-
sis of wave concepts.  The first step was made by Schrödinger, 
who introduced the wave function   ̂  Φ , which is in general com-
plex, the complexity being denoted here by the sign ^ above the 
symbol.  At that time, the meaning of the wave function was not 
clearly understood.  It was represented in the form of a product 

    
ˆ Φ = ˆ ψ (x, y, z)eiωt  of a spatial function     ˆ ψ (x, y, z)  and a time factor 

  e
iωt , where       ω = W / h , with W  being energy   

On the basis of optical analogies [1], Schrödinger built the 
wave equation for the spatial function:  

 
      

∂2 ˆ ψ 
∂x2 +

∂2 ˆ ψ 
∂y2 +

∂2 ˆ ψ 
∂z 2 +

2mE
h2

ˆ ψ = 0  

or 
     ∆

ˆ ψ + k 2 ˆ ψ = 0  (1.1) 
where 

       k = ± 2mE / h
2  (1.2) 

is the wave number; E is the kinetic energy of the electron, pre-
sented as the difference between total energy W and potential 
energy U  depending on x, y, z coordinates.  Schrödinger as-
sumed (and this assumption is generally accepted now), that the 
wave motion of the electron was around a nucleus with charge 

  Ze .  In terms of radius     r = x 2 + y 2 + z2 , the potential is 

     U (x , y , z) = −Ze2 / 4 πε0 r  (1.3) 

The condition (1.3) imposed on Schrödinger�s equation a 
definite type of solution with the wave number k dependent on 
coordinates.  But all experience in physics points to the fact that 
wave number remains a constant or varies only insignificantly in 
space, both over large volumes of cosmic space, and at the sub-
atomic level.  A field potential does not influence the wave speed 

in any practical way.  So Schrödinger�s variable wave number 
should be questioned, because the potential function cannot in-
fluence the wave speed or, consequently, the wave number. 

Apparently, Schrödinger was unable to identify correct 
boundary conditions to specify the otherwise indefinite wave 
function.  When he first began to study these questions, he no-
ticed that a simplification to �no� boundary conditions seemed 
necessary [2].  But not having been sufficiently schooled in 
mathematics, he could not understand how fundamental oscilla-
tions could occur without boundary conditions.  He later wrote 
that a more complicated form of coefficients [containing 
  U (x , y , z) ] must provide information that is usually given by 

boundary conditions.  Unfortunately, he was mistaken in this, 
because the potential function actually destroys the wave equa-
tion. 

2. Conceptual Flaws in Quantum Mechanics  
Indeed, the wave function     ˆ ψ (x, y, z)  is presented in the form 

of the product of radial   Rn, l (r) , polar     Θl ,m (θ) , and azimuth 

  
ˆ Φ m (ϕ )  factors: 

   
ˆ ψ = Rn , l (r)Θ l,m (θ) ˆ Φ m (ϕ ) , or     

ˆ ψ = Rn , l (r) ˆ Y l, m (θ, ϕ )  (2.1) 
where 
   

ˆ Y l, m (θ, ϕ) = Θ l,m (θ) ˆ Φ m (ϕ )  (2.2) 
denotes the polar-azimuth function.   

For the radial factor the potential function U from (1.3) im-
plies the differential equation 

 

   

d 2R n,l (r)

dr 2 + 2
r

dR n ,l (r)
dr

+

2m
h2 W + Ze2

4πε0r
 

 
 

 

 
 −

l(l + 1)
r2

 

 
 
 

 

 
 
 

Rn, l (r) = 0
 (2.3) 

The solutions of (2.3) for   Rn, l (r)  is a functional series which in 
general diverges; i.e.   Rn, l (r)→ ∞ for some r. Addressing this 
problem, Schrödinger together with H. Weyl (German mathema-
tician, 1885-1955) found the condition under which the series 
terminates with a finite number of terms and finite values of 
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    Rn, l (r)  for all r. The condition is that the electron total energy W 
has a numerical value expressible with infinite mathematical 
accuracy in the form  

 2
0

22 8/ aneZW πε=       (2.4) 
where a is the Bohr radius and n is the principal quantum num-
ber.  It follows that any tiny variation of electron energy, for ex-
ample at the level     ∆W = 10 −137 W , results again in   Rn, l (r)→ ∞.  
Thus, the condition (2.4) is a mathematical manipulation far re-
moved from reality.  Moreover, the uncertainty principle − the 
basis of quantum mechanics − excludes any such accuracy. 

Further, the wave function (2.1) is complex.  Misunderstand-
ing of the nature of the imaginary part of complex numbers has 
generated definite difficulties.  These have not been solved, but 
only bypassed, by formally eliminating the azimuth factor from 
the wave function.  This move predetermined the introduction of 
the modulus squared of the wave function as the wave density of 
probability for distribution of electron mass and charge in the 
space surrounding the nucleus of the atom.  Until now, it has 
been assumed that the electron charge is distributed throughout 
the intratomic space.  But at the same time, it follows from the 
potential function (1.3) used in Eq. (1.1) that the electron charge 
is concentrated in a point.  This is a logical conflict. 

Note too that the modulus squared   | ˆ ψ | 2 = ˆ Ψ ̂  Ψ *  is not itself a 
solution to the wave equation.  Such a �small item� did not attract 
attention at that time.  Instead,   | ˆ Ψ | 2  was interpreted as funda-
mental.  This allowed the �phase� aspect of the wave function to 
be ignored, and it allowed   | ˆ Ψ | 2  to be interpreted as a probabil-

ity density, the integral 
    

| ψ|∫
2

dx dy dz = 1  determining the unit 

probability that the electron is located in the intratomic space.  
As a result, only the appearance of a solution to the boundary 
conditions problem, but not the solution itself, was generated. 

Understanding the conditionality of such an interpretation, 
Schrödinger noted in 1952 [2] that �We must agree that our con-
cept of material reality is more fuzzy and indefinite than it was 
many years ago. We know plenty of the interesting things and 
every day we learn new details. However, we are unable to con-
struct a clear picture, easily imagined, with which all physicists 
could agree. Physics is experiencing a deep ideological crisis.� 
Only the basic sense of his expressions has been appreciated un-
til now. The subsequent development of quantum mechanics 
eloquently points to the fact that the interpretation of the wave 
function was a problem for physicists, and it still remains so, 
although many researchers understand its conditional character. 

It is assumed that the modulus squared of the wave function 
determines an �electron density�, closely related to the electron 
potential function (1.3). However, a formal introduction of the 
potential function in Schrödinger�s equation does not quite mean 
that the polar-azimuth distribution (2.2) has a relation to elec-
trons. As a pure mathematical function, (2.2) is not related to the 
electron potential function (1.3) (or to any other one either), and 

    
ˆ Y l, m (θ, ϕ)  is independent of boundary conditions.   

In the first publications, the functions   
ˆ Y l, m (θ, ϕ) =  

    Θl ,m (θ) ˆ Φ m (ϕ)  (see Table 2.1) were presented as graphs mainly 

as cross-sections of their modulus squared in the planes passing 
through Z-, Y-, and X-axes {see, for example, Fig. 2.2.17 in [3]}.  
Actually, their modulus graphs are the surfaces of rotation of 
these functions about the polar Z-axis, as it is presented here in 
Table 2.2.  As a result, attention was focused on the distribution 
of so-called �electron density� (electron �orbitals�) around differ-
ent axes lying in the planes of these cross-sections, all of which, 
without exception, were presented in a cigar-shaped form.  
However, the later is correct only at     m = 0 .  In the other cases 
(   m ≠ 0 ), such representation leads to gross errors. 

Table 2.1.  Reduced polar-azimuth functions   
˜ Y l, m (θ, ϕ)  

l m   
˜ Y l, m (θ, ϕ) = ˜ Θ l,m (θ) ˆ Φ m (ϕ )  

 

0 0 1 
1 0  cosθ  
 ±1  sin θ exp( ± iϕ)  
2 0  cos 2θ - 1 / 3  
 ±1  sin θ cosθ exp( ± iϕ )  
 ±2  sin 2θ exp(±2iϕ)  
3 0  cosθ (cos2θ -  3 / 5)  
 ±1  sin θ (cos 2θ -  1 / 5)exp( ±iϕ)  
 ±2  sin 2θ cosθ exp( ±2iϕ)  
 ±3  sin 3θ exp( ±3iϕ)  
4 0  cos 4 θ - 6 / 7 cos 2θ +  3 / 35  
 ±1  sin θ cosθ (cos 2θ -  3 / 7)exp( ±iϕ )  
 ±2  sin 2θ (cos2 θ -  1 / 7)exp( ±2iϕ )  
 ±3  sin 3θ cosθ exp( ±3iϕ)  
 ±4  sin 4θ exp( ±4iϕ )  
5 0  cosθ (cos4θ -  10 / 9 cos 2θ +  5 / 21)  
 ±1  sin θ (cos 4θ -  2 / 3 cos 2θ +  1 / 21)exp( ±iϕ )  
 ±2  sin 2θ cosθ (cos2θ -  1 / 3)exp( ±2iϕ )  
 ±3  sin 3θ (cos2 θ -  1 / 9)exp( ±3iϕ )  
 ±4  sin 4θ cosθ exp( ±4iϕ)  
 ±5  sin 5θ exp( ±5iϕ) ?) 
 

6 0  cos 6θ - 15 / 11 cos 4θ + 5 / 11 cos 2θ - 5 / 231  
 ±1  sin θ cosθ (cos 4θ -  10 / 11 cos 2θ +  5 / 33)exp( ±iϕ)  
 ±2  sin 2θ (cos 4θ -  6 / 11 cos 2θ +  1 / 33)exp( ±2iϕ)  
 ±3  sin 3θ cosθ (cos2θ -  3 / 11)exp( ±3iϕ)  
 ±4  sin 4θ (cos 2θ -  1 / 11)exp( ±4iϕ )  
 ±5  sin 5θ cosθ exp( ±5iϕ)  
 ±6  sin 6θ exp(±6iϕ)  

 
Sometimes, the modulus squared of real components of the 

complex function is implicitly used.  However, by tradition, the 
corresponding graphs in the equatorial plane are presented in 
the cigar-shaped form, not always correctly. 

Polar-azimuth graphs represent the surfaces of rotation 
around only polar Z-axis; hence, they cannot be treated as the 
volumetric objects in the �electron density� form.  An imaginary 
rotation of the cross-sections of polar diagrams around their axes 
of symmetry (lying in planes of these cross-sections) states a few 
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polar axes of an atom that is nonsense: a physical system, as 
whole, can have only a general polar axis of rotation.   

Let us consider this question in detail. Polar-azimuth func-
tions are presented in Table 2.1 (for simplicity, coefficients of 
functions to the higher powers have been taken to be equal to 
unity). Since the distribution of the modulus of the wave func-
tion is the qualitatively the same as the distribution of its 
modulus squared, we will consider only the distribution of 
modulus. On the basis of the data in Table 2.1, the corresponding 
graphs of polar-azimuth modulus | ),(ˆ

, ϕθmlΥ | are drawn in Ta-
ble 2.2 (drawings of | ),(ˆ

, ϕθmlΥ |2 can be found, e. g., in [4]). 

Table 2.2.  Polar levels of surfaces - diagrams of the modulus 
| ),(ˆ

, ϕθmlΥ |. 

 

Graphs | ),(ˆ
, ϕθmlΥ | for     m = 0  have the cigar-shaped form 

(with additional tori of collateral maxima, beginning from   l = 2 ), 
and in the other cases, when l and     m = 1, 2,...  they represent 
toroidal surfaces of rotation of the cigar-shaped cross-sections.  
Thus, the modulus of a polar-azimuth function is characterized 
by main and collateral extremes.  They indicate polar coordinates 
(angles θ) of extremal values of     ψ(x, y, z)  on the corresponding 
spheres of radial factors of the function. 

The simplest graph of     ψ(x, y, z)  occurs at     l = 0  and   m = 0  
(Fig. 2.1).  Extremes of the |ψ|-function are on a sphere, which 

we represent conditionally by the spherical layer-vicinity envel-
oping the spherical extremum. 

 
Figure 2.1.  Distribution of domains of the maximum of the 
wave function modulus at     l = 0  and     m = 0  in the spherical 
space-field of an atom; O is the origin of coordinates; |ψ| is 
the spherical layer vicinity of the maximum.   

It follows from the p-distribution of the |ψ|-function, that for 
  l = 1  and   m = 0  two polar maxima     Ω l,1, Ω l,2  are found at the 
spherical (radial) shell; they are presented in Fig. 2.2 by spherical 
shells of a small incremental radius.   

   
Figure 2.2.  Distribution of domains of maxima of the wave 
function modulus |ψ| at     l = 1  and     m = 0  in the spherical 
space-field of an atom.  | )(, rR ln | is the spherical layer-

vicinity of the maximum of the radial factor (an internal sur-
face of the radial spherical layer is presented by a dash cir-
cumference); | ),(ˆ

, ϕθmlΥ | is the surface of the modulus of 

the polar-azimuth factor;     Ω l,1 , Ω l,2  are locations of polar 

maxima of |ψ|. 

Such an image of the distribution cannot be interpreted as the 
distribution of electron density since, as was mentioned above, the 
polar-azimuth function (2.2) is independent of any physical con-
tent (parameter).   

   
Figure 2.3.  Distribution of domains of maxima of the wave 
function modulus |ψ| at     l = 2  and     m = 0  in the spherical 
space-field of an atom;   Ω l,1, Ω l,2  are locations of the polar 

maxima of |ψ|; L is the annular equatorial location of the 
collateral maximum of the wave function modulus. 

At   l = 2 ,   m = 0 , d-distribution of |ψ|-function (Fig. 2.3) has 
at the radial shell two other polar maxima     Ω l,1, Ω l,2  and a ring 
of the collateral maximum at the equator.  This distribution can-
not be referred to electron density either. 
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Figure 2.4.  Distribution of domains of maxima of the wave 
function modulus |ψ| at     l = 3  and     m = 0  in the spherical 
space-field of an atom;     Ω l,1 , Ω l,2  are locations of the polar 

maxima of |ψ|; L is the annular locus (of middle latitudes) 
of collateral maxima of the wave function modulus; 

  θ1 = 63 0 2 ′ 6 ′ ′ 5 . 82 ,   θ2 = 116 03 ′ 3 5 ′ ′ 4 .18 . 

At     l = 3  and     m = 0  (Fig. 2.4), we have the next pair of polar 
maxima     Ω l,1, Ω l,2  and two rings of collateral maxima of middle 
latitudes.  Correspondingly, at     l = 4  and     m = 0 , we arrive also 
at two polar maxima     Ω l,1, Ω l,2 , but at three rings of collateral 
maxima.  One ring is at the equator and two other, defined by 
the angles   θ1 = 490 ′ 6 2 ′ ′ 3 .78  and   θ2 = 130 05 ′ 3 3 ′ ′ 6 .22 , are in the 
middle latitudes. 

Finally, at     l = 5  and     m = 0 , we have one more pair of polar 
maxima     Ω l,1, Ω l,2  and four rings of collateral maxima.  The first 
pair of rings, nearest to the poles, is defined by the angles 

  θ1 = 40 0 ′ 5 1 ′ ′ 7 .11  and   θ4 = 139 05 ′ 4 4 ′ ′ 2 .89 .  The second pair is 
defined by the angles   θ2 = 7302 ′ 5 3 ′ ′ 8 .32  and  θ3 =  

  106 03 ′ 4 2 ′ ′ 1 .68 .  And so forth. 
At     l = 2 ,     m = ±1, the d-distribution of the |ψ|-function (Fig. 

2.5) is characterized by two rings of main maxima (at the spheri-
cal shell, in the domain of middle latitudes).  At     l = 2 ,   m = ±2 , 
the d-distribution of the |ψ|-function (Fig. 2.6) is represented by 
one ring of the main maximum. 

     
Figure 2.5.  Distribution of domains of maxima of the wave 
function modulus |ψ| at     l = 2  and     m = ±1 in the spherical 
space-field of an atom; L is the annular locus (of middle lati-
tudes) of main maxima of |ψ|;   θ1 = 45 0  and   θ2 = 135 0 .  

It is also possible to analyze other distributions.  But in all 
cases at     m ≠ 0  (in accord with the strict interpretation of quan-
tum mechanical solutions of Eq. (1.1) in terms of |ψ| or |ψ|2 
that leads to the same result), we have rings of main and collat-
eral maxima at the radial spherical surfaces.  However, we do not 
have cigar-shaped volumes (cut out from the figures of rotation 
along the z-axis) that are commonly used in quantum mechanics. 

 
Figure 2.6.  Distribution of domains of the maximum of the 
wave function modulus |ψ| at     l = 2  and   m = ±2  in the 
spherical space-field of an atom; L is the equatorial ring of 
the main maximum of |ψ|. 

We considered the distribution of the modulus of the wave 
function, selecting only extremes in a spherical space-field, 
where most probably the matter (particles constituent of an 
atom, etc.) must be localized.  Because nobody knows what kind 
of particles are there, we will call them X-particles.   

The image of distribution of X-particles in a spherical wave 
space-field was given above in strict correspondence with solu-
tions of Schrödinger�s equation (1.1) and David Bohm�s interpre-
tation of the modulus squared of the wave function [5]. 

In full agreement with the ideology accepted by quantum 

mechanics, the modulus squared 2ψ̂  (or the modulus ψ̂  that 

leads to the same result) of the wave function has been taken into 
consideration.  Hence the above-presented analysis is, generally 
speaking, the analysis of semisolutions of the basic equation of 
quantum mechanics (1.1), since quantum mechanics does not 
give solutions for  

ˆ ψ .  The important conclusions that must be 
emphasized are as follows: 
1) Because the s-state (Fig. 2.1) is characterized by spherical 
symmetry, quantum mechanics attributes a similar symmetry to 
the hydrogen atom.   

First, what relation do all considered solutions have, basi-
cally, to the hydrogen atom?  From where does it follow?  

Second, even if we will agree with such a supposition as to 
the relation of the s-state to H-atom, nevertheless, the spherical 
symmetry of the hydrogen atom is a myth.  The hydrogen atom, as 
a paired proton and electron, does not possess the spherical symmetry 
that defines corresponding angular and magnetic moments.  
Moreover, the proton in turn has the discrete structure with the 
polar axis of symmetry [6] that manifests itself in the fine and 
superfine structure of nucleon spectra, etc. 
2) Every radial shell of atoms with the wave number m=0 is 
represented by two polar maxima and rings of collateral 
maxima, which means that these shells are characterized by the 
axis of the infinite-fold symmetry. The main and collateral maxima-
rings at   m ≠ 0 give the same infinite-fold symmetry.  But, such 
symmetry cannot form the discrete atomic spaces.  Hence, solu-
tions obtained do not reflect the discrete feature of matter.   

Thus, quantum mechanics solutions, in their modern form, con-
tradict reality because, on the basis of these solutions, the exis-
tence of crystal substances-spaces is not possible.   
3) It is a principle as well that the wave function itself is always 
characterized by three arguments: ρ, θ, and ϕ (in the spherical 
polar frame of reference), independently on its use in concrete 
cases to describe different wave processes.  Therefore, it is im-



Fall 2002 GED Special Issues, GED-East  

 27

possible to agree with such a mathematical operation by which 
the azimuth angle ϕ is �cut off� from the wave function, because the 
definite information, which implies the wave equation and the 
function itself, is rejected as a result. 
4) Introduction of the potential function (1.3) in the wave equa-
tion, which results in dependence of the wave number k on the 
Coulomb potential, generates divergences that do not have a physi-
cal justification.  They are eliminated in an artificial way. 
5) In a theory of wave processes and oscillations, mutually con-
jugated parameters U and V (as for example, electric and mag-
netic vectors E and H) represent, usually, in the form of complex 
function     ̂  Ψ =U + iV .  And a question about a meaning of  ̂  Ψ  
does not arise because functions U and V have, in accord with 
their definitions, a definite physical meaning.  Quantum mechan-
ics does not separately consider the second (�imaginary�) mem-
ber in the complex wave function because the nature of �imagi-
nary� numbers is unknown for it. 
6) In modern computer programming languages, there exists a 
command �FORWARD� by which it is possible to offer a proce-
dure without a concrete physical filling of it, anticipating events.  
In this sense, Schrödinger�s equation (1.1) is a logical formation 
similar to the directive �FORWARD�, which accepts the real-
science filling only after definition of the wave function on the 
basis of initial notions, independent of the wave equation.  Un-
fortunately, as we see, the initial concepts have been incorrectly 
introduced by quantum mechanics, which resulted in the ques-
tionable atomic model commonly used now. 

3.  The Right Presentation of the  
      Wave Equation and its Effects 

As follows from the above described, the variable wave 
number k destroys the wave equation for   ˆ ψ .  Moreover, elimina-
tion of the third azimuth coordinate ϕ in three-dimensional pres-

entation of results, caused by operation only with 2ψ̂ , has led to 

absurdity. 
To correct the faults of quantum mechanics found here, it is 

necessity to carry out the following:   
1) The variable factor k (1.2) in Eq.  (1.1) must be replaced with 
the constant wave number     k = ω / c , where ω is the fundamental 
‘carrying’ frequency of the wave field at the corresponding level 
of space, c is the speed of light.   

2) We must face the necessity to find   ˆ ψ , rather than 2ψ̂  or ψ̂  

that does not contain the azimuth coordinate ϕ.  Namely, the 
azimuth factor   ˆ Φ (ϕ )  must be taken into consideration along with 
radial     R(r)  and polar   Θ(θ)  factors of the wave function (2.1).   

Under the above-accepted conditions, the space factor 

    
ˆ ψ (x, y, z)  of the general solution will satisfy 

 
    
∆ ˆ ψ +

ω2

c2
ˆ ψ = 0  (3.1) 

In this case, the differential equation for the radial factor   R(r)  
(considered in detail in [6]) is 

 
    
ρ2 d 2 Rl

d ρ2 + 2ρ
dR l
d ρ

+ ρ2 − l(l + 1)[ ]R l = 0  (3.2) 

where  ρ = kr .  Thus, the wave functions in two wave equations, 
(1.1) and (3.1), are distinguished by various radial functions, 
described by different equations, (2.3) and (3.2) correspondingly, 
whereas polar-azimuth factors are equal, to within normalizing 
factors. 

We do not consider here the nature of the ingredients ω and c 
of the k-parameter, because on the whole their constant values 
do not influence solutions of Eq. (3.1).  The value of the funda-
mental frequency ω determines only the absolute scale of all pa-
rameters at the corresponding level of space.  At the atomic and 
subatomic levels (see [6]), it is equal to 

   ωe = 1.86916197 ⋅ 10 18 s−1  (3.3) 

The wave radius corresponding to (3.3) is  

    D e = c / ωe = 1.603886998 ⋅ 10 −8 cm  (3.3a) 

As we can see,   D e  is equal to one-half of mean value of the in-
teratomic distance in crystals (in terms of the generally accepted 
atomic model); that is not a random coincidence.   

Extremes and zeros of the polar factors   Θl ,m (θ)  determine 
(as shown in Figs. 2.2 � 2.6 on the right) circumferences-parallels at 
the radial spheres.  A continuous set of such circumferences 
forms the polar surface of rotation (Table 2.2). 

Azimuth factors   
ˆ Φ m (ϕ ) = exp(± im ϕ) =    cos m ϕ ± i sin m ϕ  

(the role of which was neglected by conventional quantum me-
chanics) determine azimuth planes, where the wave function 

  
ˆ ψ (x, y, z)  takes extremal or zero values.  Such planes pass 

through the polar Z-axis and form meridians at the sphere de-
fined by the radial function.  (The meaning of two components of 
complex functions (numbers) and the meaning of number i are 
revealed in the works [6, 8]) 

Thus, the polar-azimuth function     
ˆ Y l, m (θ, ϕ) = Θ l,m (θ) ˆ Φ m (ϕ )  se-

lects at the characteristic radial spheres of the radial function   Rl (r)  
the point nodes-extremes and nodes-zeros (kinetic and potential 
nodes).  Potential (�real�) factors     

ˆ Y l, m (θ, ϕ) p  (Table 3.1) of polar-

azimuth functions   
ˆ Y l, m (θ, ϕ)  are defined by the formula 

   
ˆ Y l, m (θ, ϕ) p = Θl, m (θ) cos m ϕ  (3.4) 

kinetic (�imaginary�) components � by the formula 

   
ˆ Y l, m (θ, ϕ) k = Θl ,m (θ)sin m ϕ  (3.4a) 

Extremes (positive or negative) are between zeros-nodes, ex-
actly repeating zeros-nodes geometry.  Therefore, it is sufficient 
to show only the geometry of zeros-nodes.  This is drawn in Ta-
ble 3.2 (here  n = l ).  It is natural to assume that if extremes de-
termine maxima of motion and, consequently, are �kinetic� points 
of space, then zeros should be attributed to the �potential� points 
of rest.   

It is reasonable to assume that the distribution of nodes of the 
wave spherical space, described by the wave equation (3.1) and 
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presented in Table 3.2, also defines the distribution of particles of 
matter, if a material space is considered.  As far as any particles, 
obviously, they have to be disposed in nodal points of the wave 
space.  The more so, the wave equation of space [6] 

   ∆ ˆ Π = ∂2 ˆ Π / ∂τ2  (3.5) 

where     
ˆ Π = ˆ ψ ˆ T (τ) , and   ˆ ψ  is the space factor of the general solu-

tion, satisfying to the Eq. (3.1), does not describe the motion of 
isolated objects, but it describes the wave process at the definite 
level of space on the whole.  Therefore, wave solutions of space 
allow us to determine space structures as unified systems, i.e. 
wave equations of space are equations of microsystems. 

The question arises: what kinds of particles are localized in 
nodes of space at the atomic level − neutrons, protons, electrons, 
or all together?  Analyzing the structure of crystals at the end of 
18th century, R.J. Haüy (1743-1822) [7] came to the conclusion 
that it is necessary to consider atoms as elementary molecules, 
the internal structure of which determines the crystal structure of 
solids.   

As masses of atoms are multiple of the neutron mass (or hy-
drogen atom mass), following Haüy�s ideas makes it reasonable 
to suppose that any atom, like the elementary Haüy�s molecule, 
is the neutron (H-atom) molecule. 

Actually, it was shown by comprehensive analysis of direct 
and indirect consequences of solutions of the wave equation (3.1) 
[6], that nodes of intratomic space are completed by neutrons (H-
atoms); therefore, atoms should be considered as neutron (H-
atom) quasispherical multiplicative molecules.  The word 
�multiplicative� means that particles, constituted of these elemen-
tary molecules, must be coupled by strong bonds, which we call 
the multiplicative bonds.  Then, it is reasonable to call ordinary 
molecules with relatively weak (so-called chemical) bonds com-
posite or additive molecules; e.g. if deuterium D is the multiplica-
tive molecule then the hydrogen molecule H2 is the additive one.  
Thus, it is possible to assume that Table 3.2 shows the actual pic-
ture of distribution of nodes-extremes, corresponding to Haüy�s 
elementary molecules. 

Principal azimuth nodes of the wave space of atoms are 
marked by ordinal numbers.  These numbers coincide with the 
ordinal numbers of elements of Mendeleev�s periodic table.  The 
quantity of neutrons, localized in one node, is equal to or less 
than two.  Collateral nodes, designated in the Table 3.2 by 
smaller white circles, are partially vacant; these possibly provide 
conditions for the intratomic movement of neutrons or protons.  
For example, one of the isotopes of 14Si has four spherical neu-
tron shells, the principal nodes of which are completed (contain 
28 neutrons), but two collateral nodes of the outer shell (   n = 3 , 
    m = ±1, see Table 3.2 where   n = l ) are vacant.  The latter, appar-
ently, determine the semiconductor properties of 14Si. 

Table 3.1. Reduced polar-azimuth potential functions 

    
˜ Y l, m (θ, ϕ) p  

l m     
˜ Y l, m (θ, ϕ) p = ˜ Θ l, m (θ) cos m ϕ  

 

0 0 1 
1 0   cosθ  

 ±1  sin θ cosϕ  
2 0  cos 2θ - 1 / 3  
 ±1  sin θ cosθ cosϕ  
 ±2  sin 2θ cos2ϕ  
3 0  cosθ (cos2θ -3 / 5)  
 ±1  sin θ (cos 2θ - 1 / 5) cos ϕ  
 ±2  sin 2θ cosθ cos2 ϕ  
 ±3  sin 3θ cos3 ϕ  
 

4 0  cos 4 θ - 6 / 7 cos 2θ + 3 / 35  
 ±1  sin θ cosθ (cos 2θ - 3 / 7) cos ϕ  
 ±2  sin 2θ (cos2 θ - 1 / 7) cos2 ϕ  
 ±3  sin 3θ cosθ cos3 ϕ  
 ±4  sin 4θ cos4ϕ  
 

5 0  cosθ (cos4θ - 10 / 9 cos 2 θ+ 5 / 21)  
 ±1  sin θ (cos 4θ -  2 / 3 cos 2θ +  1 / 21) cos ϕ  
 ±2  sin 2θ cosθ (cos2θ -  1 / 3) cos2 ϕ  
 ±3  sin 3θ (cos2 θ -  1 / 9) cos3 ϕ  
 ±4  sin 4θ cosθ cos4 ϕ  
 ±5  sin 5θ cos5 ϕ  
 

6 0  cos 6θ - 15 / 11 cos 4 θ+ 5 / 11 cos 2θ - 5 / 231  
 ±1  sin θ cosθ (cos 4θ - 10 / 11 cos 2θ + 5 / 33) cos ϕ  
 ±2  sin 2θ (cos 4θ - 6 / 11 cos 2θ+ 1 / 33) cos2 ϕ  
 ±3  sin 3θ cosθ (cos2θ - 3 / 11) cos3 ϕ  
 ±4  sin 4θ (cos 2θ - 1 / 11) cos4 ϕ  
 ±5  sin 5θ cosθ cos5 ϕ  
 ±6  sin 6θ cos6ϕ  

 
Arranging atoms with the same or similar structure of outer 

shells one under another, in accordance with Table 3.2, we arrive 
at the periodic-nonperiodic law of spherical spaces [6] that constitutes 
periodic table (Table 3.3), slightly differing from the conventional 
one of Mendeleev.   

As it turned out, the discrete model of atoms is in perfect 
agreement with both basic scattering experiments and most of 
the physics of atoms as we know it [6].  Moreover, this atomic 
model reveals in an understandable form various facets of differ-
ent phenomena misunderstood until now.  Energetic calcula-
tions, such as the bond energy in such an atom viewed as a neu-
tron molecule, etc., also confirm the consistency of this model 
with experimental fact [6].   

4.  Conclusion 
The quantum mechanics foundation for the description of the 

atomic structure has been analyzed.  Avoiding the gross errors of 
quantum mechanics, we have taken into account both the com-
plex presentation of the wave function and the constant value of 
the wave number k in the wave equation.  We keep in mind the 
origin of wave equation, before using it in quantum mechanics.  
The constant value of k follows from the wave character of space 
at any of its levels, including the atomic level [1].  Thus, the prob-
lem of the structure of atoms has a new and convincing solution. 
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The wave equation of space (3.1) takes a form similar to the 
basic equation of quantum mechanics (1.1), but these equations 
are different in contents because: 
1) The factor     k

2  in the equation of space (3.1) is the fundamen-
tal constant     k = ω / c , whereas in (1.1) it is a variable quantity 

equal to       k = ± 2m (W −U ) / h
2 , in which   U (x , y , z) =  

    −Ze 2 / 4πε0 r  is the �potential energy of the electron in the field 
of a nucleus, depending on electron coordinates�.  The last condi-
tion is based on the nuclear model of atoms and on the supposi-
tion about the Coulomb kind of interactions between the nucleus 
and the electrons in atoms. 
2) The wave equation of quantum mechanics (1.1) �describes�, 
thus, the motion of the electron around an atomic nucleus with 
the charge Ze, whereas Eq.  (3.1) really describes the structure of 
the wave space, including the atomic space as the discontinuous 
part of the wave space. 

Therefore, the solutions of the wave equation of space (3.1) 
and the quantum mechanics equation for electrons (1.1) are differ-
ent because they describe different phenomena and have differ-
ent meaning. 

 
 
Table 3.2  Discrete structure of atomic spheres with potential 
nodes and rings. �N� and �S� denote north and south polar nodes. 

 
 

Table 3.3.  Solutions of the wave equation (3.1) presented in the traditional form of the periodic law of chemical elements; or the quasiperi-
odicity as a result of similarity of the structure of external shells of abstract atoms drawn in Table 3.2. 
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It should also be noted that quantum mechanics does not di-
rectly use its own solutions, as is done in realistic science.  In-
stead it operates with the squared modulus of the wave function.  
This extraordinary illogical act allows one to drop �an imaginary 
part� of the wave function, which is believed conventionally to 
�have no physical meaning�.  However, a tradition is not a proof.  
In his time, Leibniz wrote, �A complex number is a fine and wonder-
ful refuge of the divine spirit, as if it were an amphibian of existence 
and nonexistence.�  Unfortunately, creators of quantum mechanics 
have neglected this insight.  In the past, negative numbers were 
also named �imaginary�, because they were considered to be un-
real quantities �smaller than nonexistence�.  But in the course of 
time, emotions cooled and the �imaginary� negative numbers 
turned into real ones.  However, the square root of a negative 
number today remains �imaginary�.  The above-mentioned prob-
lems have been solved in works [6, 8]. Moreover, the hypothesis 
that considers the squared modulus of the wave function as the 
measure of probability is not justified. 

The solutions of the wave equation of space here obtained 
yield the discrete (nodal) structure of matter-space, and the peri-
odic-nonperiodic law of atomic structures. This makes possible 
the understanding of characteristic features of different atoms, 
which are (in that case) quasispherical neutron (H-atom) mole-
cules of the real physical space, and their arrangement in accor-
dance with the obtained solutions in the periodic table.  Theoreti-
cal by nature, the new periodic table and Table 3.2 extend our 
ability to explain well known features of elements, and the struc-
ture of their compounds [9].  The data obtained make it possible 
to reveal, from the new point of view, the mysterious properties 
of atoms, including the nature of the periodicity itself. 

Publications on the above-discussed theme and related to the 
approach accepted by the authors have not been found in litera-
ture; therefore, there are no references on similar works of oth-

ers.  As concerns quantum mechanical concepts considered, 
these can be found in the referring works or in any from thou-
sands of widely accessible monographs and textbooks on quan-
tum mechanics easily understandable to keen college seniors and 
graduate students. 
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