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The Shell Structure of Matter Spaces 
 

 
1. Introduction 
 

The wave exchange of matter, space, rest, and motion (or more simply called matter-space-time) is 
in the nature of all physical phenomena. Therefore, the probability of possible states must have also the 
wave character and reflect the states of rest and motion. The possibility of rest and motion gives birth to 
the potential-kinetic field of reality, where rest (a potential field) and motion (a kinetic field) are 
inseparably linked between themselves in the unit potential-kinetic field.  

This is why we describe the possibility of potential-kinetic wave processes by the corresponding 
wave probability of rest-motion. Thus, speaking about the probabilistic wave field, or the field of 
probability, we bear in mind an ideal image of the wave of possibility and reality, including its nature. 

The wave theory of probability considers kinematics of wave probabilistic processes as the effect of 
wave interactions. It means that this theory is not interested in the consideration of fields of wave 
interactions − the contents of the processes; but it is interested only in their form, i.e., in the kinematic 
spatial geometry of wave processes.  

 
 

2. Phase and energetic probabilities; the probability potential 
 

Thus, the measure of the wave of possibility is the wave of probability under which we mean, by the 
definition, the mathematical image of the wave of possibility. We will also call such probability the 
phase probability and denote it by the symbol p� . 

We distinguish two opposite phase probabilities, the kinetic pk and potential pp, which express the 
probability of states of motion and rest.  
The kinetic and potential phase probabilities define the potential-kinetic phase probability 
     kp ippp ++++====� ,      (1) 
where i is the unit of negation (see the paper �The System of Primordial Concepts in Dialectical Physics 
(Outline)� and Introduction (http://www.bu.edu/wcp/Papers/Logi/LogiShpe.htm)). 

The density of phase probability Ψ�  describes the distribution of phase probability p� :  
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where pd�  is the elementary phase probability, dV is the elementary volume of space, pΨ  and kΨ  are, 
correspondingly, the potential and kinetic densities of phase probability. 

We further assume that the phase probability p�  (1) and its density Ψ�  (2) satisfy the wave 
probabilistic equations:  
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The phase probability p�  and its density Ψ�  must describe any wave events. In every concrete case, 
the character of studying objects and the concrete chosen parameters-measures of the description are 
determined by these events. 

If the density of energy of the field is proportional to the wave amplitude of density of phase 
probability squared, then 
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where dEp, dEk, and dE are differentials of the potential, kinetic, and total energy; pζ and kζ  are some 
coefficients of proportionality depending on the selection of phase probability and on the character of the 
field. For the class of fields satisfying the condition ζζζ ======== kp , we have 
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Along with the phase probability, we operate with the notion of energetic probability. It is needed 
due to the simple reason that the distributions of total energy and masses are different (although they are 
related between themselves in the wave field-space of exchange). We must distinguish them. 

The differential of energetic probability dw, by the definition, should be assumed to be proportional 
to the differential of energy dE , i.e., 

 dEdw η==== ,     (6) 
where η is the coefficient of proportionality. 

In such a case the densities of potential, kinetic, and total energetic probabilities are determined as 
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where ζηξ ====  is the coefficient of proportionality depending on the character of the field and the choice 
of the wave function Ψ� . 

The characteristic elements of the wave probabilistic geometry − extremes and zero of the functions 
Ψk and Ψp − define its discrete structure. 

Potential and kinetic extremes are mutually conjugated because the conjugated functions 
   kp iΨΨΨ ++++====�    and kppkkp iii )()()(� ΨΨΨΨΨ ++++−−−−====++++====        (8) 

satisfy the wave equation (3). Moreover, these extremes are also �conjugated� to zero of the wave 
function because the kinetic extremes spatially coincide with the potential zero and the potential extremes 
are spatially imposed upon the kinetic zero. 

The extremes and zero of Ψk and Ψp functions coincide with the extremes and zero of their squares, 
2
kΨ  and 2

pΨ , in three-dimensional space of reality. Therefore, they define the same probabilistic 
geometry of density of states and the energies related to the extremes and zero.  

Since the wave functions p�  and Ψ�  satisfy the same wave equation (3), the extremes and zero of 
phase probability p�  and its density Ψ�  coincide. Hence, in this sense, the functions p�  and Ψ�  are 
equivalent.  

The value of the constant coefficient (the normalizing factor) of the Ψ� -function does not matter 
because only its extremes and zeros define the discrete structure of a studying object. Therefore, it makes 
sense to introduce the notion the probabilistic potential (or the probability potential) proportional to the 
wave function, which we also designate by the symbol Ψ� . 

The wave probabilistic potential Ψ�  in the spherical polar coordinates (with the physical polar Z-
axis) is represented in the form of the product of the four multiplicative components-functions of 
probability: )(� ρR  (where kr====ρ ), )(θΘ , )(� ϕΦ , and )(� tΞ , which represent by themselves the 
multiplicative components of probability potential.  

The radial, polar and azimuth components of the potential of probability form the spatial amplitude 
of the potential of probability )(�)()(�),,(� ϕθρϕθρψ ΦΘR==== . Thus, the potential of probability Ψ� , 

)(�),,(�)(�)(�)()(�� ttR ΞΞΦΘΨ ϕθρψϕθρ ======== ,    (9) 
is determined by the product of spatial and time potentials of probability. Their amplitudes are described, 
in accordance with (3), by the following equations: 

0�� 2 ====++++ ψψ k∆ ,      (10)  
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After the conventional separation of variables, the wave equation (10) falls into the equations of 
radial )(� ρlR , polar )(, θmlΘ , and azimuth )(� ϕmΦ  components:   
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Solutions and, in the definite degree, the form of the radial equation (12) depend on the concrete 
problem, which imposes the definite requirements on k2. However, for any model of an object of study, 



 

Copyright © 2001 George Shpenkov 

3

the radial solutions define the characteristic radial shells, i.e. the shells of characteristic values of 
arguments of radial functions, which include both extremes and zeros of corresponding radial functions 
(potential and kinetic). For a variety of problems, it is sufficient to know that such characteristic shells 
(spheres) exist. It is very important for determination of the spatial geometry of a studying object.  

 
 

3. Radial shells of the wave spherical field of possibility and reality 
 

Let us consider the structure of spherical objects of matter-space-time assuming that the wave vector 
k is constant. Under such approach (which represents the simplest solution), the k-vector is determined by 
the fundamental �carrier� frequency ω. At the atomic and subatomic levels, it is determined by the 
formula (5.15) (see the paper �The System of Primordial Concepts in Dialectical Physics (Outline)�). 
Therefore, radial functions are uniquely determined by the general structure of the equation (12). 

At integer values of the wave number m, an elementary solution of the wave equation (10) has the 

standard form. If we will present the number m in the form sm 2
2
1==== , where Ns ∈∈∈∈ , we arrive at  
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2

1 ρ++++lN ) are the Hankel, Bessel and Neumann 

functions, correspondingly; and Al is the constant factor. 
Solutions of the type (14), we call the even solutions.  
It is convenient to present the radial component of the �amplitude� function in the following form
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and A is the constant factor, determined on the basis of definite conditions. 
If the radial component 
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describes the potential radial field, then the component 
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describes the kinetic radial field. And vice versa, if the function (18) expresses the kinetic field then the 

equation (19) � the potential field.  

Under the condition 1>>>>>>>>ρ , the Hankel function is determined by the approximate equality 
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The function (21) can be called the spherical exponential, because at 1>>>>>>>>ρ  it is proportional to 

ρie±±±± . The functions )(ρlj , )(ρly  (or )(ρln ), and )(ρ±±±±
lh , entering in (16) and (17), are Bessel's 

functions, correspondingly, of the first, second, third, and forth kinds. 
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The components of the spherical exponential    
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we call, correspondingly, the spherical cosine and sine. 
Thus, at significant distances from the central domain of the spherical field, the radial function is 

represented by two harmonic spherical waves, one of which propagates from the center, another one 
converges on the center of the spherical field:  
    ρρ ρ /�)(� i

ll eaAR −−−−≈≈≈≈ ,  ρρ ρ /�)(� i
ll eaAR ++++≈≈≈≈ .    (24) 

The radial function (24) with the negative sign of its exponent defines the divergence wave, whereas the 
function with the positive sign of its exponent � the convergent wave. For this reason, signs �−� and �+� 
in the expression (16) define, correspondingly, the divergent and convergent radial waves. 

We will supplement solutions of the equation (10) with the half-integer solutions at sml )2/1(======== : 
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As follows from the equation (27), the polar extremes of odd solutions lie in the equatorial plane [1]. 
All spatial components are determined with the accuracy of a constant factor A, imposed by 

boundary conditions, which have no influence on the peculiarity of distribution of the nodes of radial 
spheres. The superposition of even and odd solutions defines the even-odd solutions. Odd solutions 
describe the nodes, lying in the equatorial plane of atomic space. In this plane, there are also rings of 
space separated by the radial unstable shells. A similar structure is widespread in the Universe. For 
example, big planets of the solar system have rings of matter on such shells. Potential and kinetic nodes 
specify the discrete geometry of the wave field-space. 

Usually, in the simplest solutions of a series of classical problems, the Neumann function is not 
considered because of a simple reason: under 0→→→→ρ  it moves towards infinity. This is not admitted in 
the analysis of microobjects, since a radius of the minimal shell, minmin kr====ρ , limits the minimal value of 
ρ-parameter. 

Thus, the potential and kinetic spatial components of Ψ-potential have the following form 

    ϕθρρπρρψ im
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4. The space distribution of extremes of the probabilistic potential; the periodic 

law of atomic structures 
  
 

Two elementary polar-azimuth solutions of the equations (13) and (14) take the following form 

 )cos()(),( ,,, αϕθϕθ ++++==== mCCY mlmmlpml Θ , )sin()(),( ,,, αϕθϕθ ++++==== mCCY mlmmlkml Θ . (29) 

where α is the initial phase of the azimuth state. 
We term the first solution of (29) the potential polar-azimuth component of density of phase 

probability, and the second one − the kinetic component. Both solutions define the potential-kinetic polar-
azimuth component of density of phase probability 

)(exp()(),( ,,, αϕθϕθ ++++==== miCCY mlmmlml Θ .   (30) 
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The reduced polar-azimuth potential functions, ϕθϕθ mmlml cos)(~),(~
,, ΘΥ ==== , are presented in Table 1. 

(For reduced functions, the normalizing constant factors are equal to the numerical unit) 
 

TABLE 1.  
Reduced polar-azimuth potential functions ),(~

, ϕθmlY  
 l  m ϕθϕθ mY mlml cos)(~),(~

,, Θ====                   
0 0   1 
1 0   cosθ               5        0 cosθ (cos4θ - 10/9 cos2θ + 5/21) 
 ±1   sinθ cosφ        ±1 sinθ (cos4θ - 2/3 cos2θ + 1/21) cosφ 
2 0   cos2θ - 1/3        ±2 sin2θ cosθ (cos2θ - 1/3) cos2φ 
 ±1   sinθ cosθ cosφ        ±3 sin3θ (cos2θ - 1/9) cos3φ 
 ±2   sin2θ cos2φ        ±4 sin4θ cosθ cos4φ 
3 0   cosθ (cos2θ - 3/5)       ±5 sin5θ cos5φ 
 ±1   sinθ (cos2θ - 1/5) cosφ 
 ±2   sin2θ cosθ cos2φ            6          0       cos6θ - 15/11 cos4θ +5/11 cos2θ - 5/231 
 ±3   sin3θ cos3φ        ±1       sinθ cosθ (cos4θ - 10/11 cos2θ + 5/33) cosφ 
4 0   cos4θ - 6/7 cos2θ + 3/35       ±2       sin2θ (cos4θ - 6/11 cos2θ + 1/33) cos2φ 
 ±1   sinθ cosθ (cos2θ - 3/7) cosφ      ±3       sin3θ cosθ (cos2θ - 3/11) cos3φ 
 ±2   sin2θ (cos2θ - 1/7) cos2φ       ±4       sin4θ (cos2θ - 1/11) cos4φ 
 ±3   sin3θ cosθ cos3φ       ±5       sin5θ cosθ cos5φ 
 ±4   sin4θ cos4φ        ±6       sin6θ cos6φ 

 

 
 
Polar components )(, θmlΘ  of space density of probability Ψ�  (Fig. 1a) define characteristic parallels 

of extremes and zeros (principal and collateral) on radial spheres (shells). Azimuth components Φm(ϕ) 
define characteristic meridians of extremes and zeros. Potential and kinetic polar-azimuth probabilities 
select together the distinctive coordinates (points) of extremes and zeros on the radial spheres (Fig. 1b-d). 
Graphs of these functions (Fig. 1 and Table 2) show that there are principal and collateral extremes, 
which determine, respectively, stable and metastable states of probabilistic events.  

 

 
Fig. 1.  The graphs of the polar Θ5,2 (θ) (a) and polar-azimuth Y5,2 (θ, ϕ) (b) functions; extremes of the 

function Y5,2 (θ, ϕ) on the characteristic radial shell R5(r) (c) distinguishing the disposition of 
extremes-nodes (d) (principal and collateral, black and white circles), in the spherical field of 
probability. 

 
At m=0, the azimuth function )(ϕΦ  defines the Z-axis as the axis of phase probability of infinite-

fold symmetry, at m ≠ 0  Z-axis is the axis of 2m-fold symmetry. Twelve-fold symmetry (m=6) was 
found by S. Mae [2]. As follows from the equality (29), geometry of the potential polar-azimuth 
probability pml ),(, ϕθΥ  will be the same as for the kinetic probability if the first one will be turned 
around the Z-axis at a right angle. In this sense, the geometries of spaces of rest and motion are mutually 
perpendicular. 
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The discrete geometry of polar, principal, and collateral extremes of the potential phase probability 
Ψp, shown in Table 2, gives the descriptive images of the phase wave probability. The black spheres 
indicate the vicinities of principal extremes. The white spheres of a smaller diameter show, conditionally, 
the collateral ones. Conditionally, all nucleon shells are drawn in Table 2 in a scale of radial spheres of 
the same radius. 
 

TABLE 2.  Solutions of the wave probabilistic equation 2

2

2

�1�
tc ∂∂∂∂

∂∂∂∂====
ΨΨ∆  presented in the form of the 

space distribution of potential extremes-nodes (discrete elements of the shell nucleon 
structure of atoms); numbers 1, 2, 3, � , 110 are the ordinal numbers of the principal polar-
azimuth nodes coinciding with the atomic numbers of elements Z. 

 

 
 
In extremes, principal and collateral, the definite structural units of wave objects are localized. In 

Cosmos, approximately a half of all stars are double. Accordingly, we can assume that at the atomic level 
in extremes, at the most, two nucleons can also be disposed. The number of structural units, localized in 
an extreme, defines the multiplicity of its completing. We will call all extremes simply, the nodes of 
shells. 
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The two polar extremes, �north� and �south� (the white circles designated in Table 2 by the symbols 
lN and lS, where l=1, 2, 3...), and the circular extremes-meridians (beginning from l=2) characterize the 
radial shells at m=0; therefore, all these shells are almost similar. 

Principal potential nodes (denoted in Table 2 by ordinal numbers) define the discrete geometry of 
probabilistic radial polar-azimuth wave shells at m ≠ 0 ; they are determined by the functions:  

     )cos()()( , αϕθρ ++++==== mRC mllp ΘΨ Ψ ,     (31) 

where mmlCC ΦΨ ,====  is the constant factor and kr====ρ  is the radius of characteristic shells, i.e., the shells 
with  the zero or extremal value of radial functions. 

For the kinetic nodes, we have  

     )sin()()( , αϕθρ ++++==== mRC mllk ΘΨ Ψ .        (32) 

As was mentioned above, there is the difference between distributions of two kinds of extremes: 
(1st) the density of phase probability Ψ�  and (2nd) the density of energy of wave fields proportional to 

2�Ψ . This difference is demonstrated in Fig. 2. 

 
Fig. 2. Distribution of extremes of probabilistic states (small black and white spheres) and extremes of the 

total energy Em (large toroidal circumferences) for the shell with l=4, m=±2. 
 
To the definite extent, every principal node with the ordinal number Z bounds all previous shells 

with their nodes, which, as whole, require the definite designation. We denote such a bounded formation 
by the symbol ZX. The subscript Z indicates the number of principal nodes and, simultaneously, the 
ordinal number of the last principal node of a probabilistic object. Thus, X is an arbitrary symbol of the 
wave object of shell structure. Having the specific spatial structure, every such object is distinguished 
from all others by the specific unrepeatable properties. A totality of discrete units (nodes) of the wave 
probabilistic field is considered as an element (�atom�) of such the abstract discrete-wave field. 

The completely realized polar-azimuth n-th shell of the potential nodes of an abstract atom is 
defined, in accordance with the wave equation of probability (3), by the function 

    )cos()()(),,( ,,,, αϕθρϕθρ ++++==== mRC mlnllpnlml ΘΨ Ψ ,    (33) 

where nl.ρ  is the radius of n-th characteristic radial shell of the function )(ρlR . We will call such shells 
the whole shells. The geometry of shells is determined by the polar-azimuth functions. Graphs of some 
integer solutions of )cos()(, αϕθ ++++mmlΘ  and their sections are presented in Fig. 3. 

The last shells of 1H, 2He, 10Ne, and 28Ni, presented on the right side in Fig. 3, are, correspondingly, 
the polar shells )(0,1 θΘ , )(0,2 θΘ , )(0,3 θΘ , and )(0,4 θΘ . They define the structure of some shorter-lived 
heavier isotopes of these elements. In the case of carbon atom, the difference between two images is in 
the form of the functions, ϕθ cos)(1,1Θ  (the left picture) and )2/cos()(1,1 πϕθ ++++Θ  (the right picture).  

The first form of carbon has a plane structure, the second one � an octahedral structure. The last 
apparently responses for the formation of the diamond like structure of carbon. In some degree, it is 
similar to the structure of external shells of silicon 14Si. Looking at these pictures, it is natural to come to 
the conclusion that polar nodes form, figuratively speaking, as if the �spinal� of atoms. 

The partial realization of �fractional� shells is defined by the half-integer solutions [1] of the 
following kind 

)cos(sin)(),,( ,,, αϕθρϕθρ ++++==== lRC l
nllpnlll ΨΨ       (34) 

where l is a real number, with extremes lying in the equatorial plane. 
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Fig.3.  The structure of polar-azimuth whole shells for hydrogen 1H, helium 2He, carbon 6C, neon 10Ne, 

silicon 14Si, titanium 22Ti, and nickel 28Ni. 
 
 

At   ,...3,2,1,0,
2
1 ============ ssml , we obtain the half-integer solutions 

    )2cos(sin)(),,( 2
,, αϕθρϕθρ ++++==== sRC

s
jsspjss ΨΨ ,   (34a) 

where js,ρ  is the radius of the characteristic half-integer j-shell of the function )(ρsR .  
For s = 1, only one-half of the azimuth wave is placed on the equator of an external shell. It defines 

one extremum and Z-axis of the first-fold symmetry. If s = 2, the function (34a) defines two extremes and 
the second-fold axial symmetry; s = 3 results in the three extremes and third-fold symmetry Z-axis, etc. 
Half-integer solutions in the equatorial domain have any-fold symmetry that attracts the special attention 
of modern researchers. In particular, the five-fold symmetry, strictly forbidden by the mathematical laws 
of crystallography, was observed in 1984 [3]. 
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Half-integer solutions at s = 1 describe the azimuth wave of probability in the equatorial plane, 
which twice rotates the equator. In such a traveling wave during a half-period, signs of parameters are 
changed into opposite. 

Running twice the equator, the wave of probability repeats again. Hence, we can write 

    ))4(
2

,()
2

,( πϕθϕθ ++++==== sYsY ,     (35) 

where ...,3,2,1====s , which takes place actually. 
The common requirement of periodicity, )2,(),( πϕθϕθ ++++==== YY , must mean that the one complete 

wave of probability is placed on the equator, but it is not in agreement with the aforementioned solutions. 
In the general case, the complete structure of any element (abstract atom) is defined by the two sums  

as  (((( ))))s
s

jsssmmlnllZ
sRCmRC βϕθραϕθρψ ++++∑∑∑∑⊕⊕⊕⊕++++====∑∑∑∑ 2cossin)()cos()()( 2

,,, ΘΨ  . (36) 

Thus, the first sum in (36) consists of embedded whole shells, the second sum consists of embedded 
half-integer subshells. 

The initial phases, mα  and sβ , characterize a mutual azimuth orientation of polar-azimuth shells 
and subshells of the atomic space with respect to the polar Z-axis. They are expressed by the vector of 
initial phases ),...,;,...,( 11 sm ββααα ==== . 

The polar shells (m = 0) are always the whole ones. They have axes of the infinite-fold symmetry 
and, hence, their mutual azimuth orientation does not matter. 

The mutual azimuth orientation of polar-azimuth shells and subshells defines the space isomers of 
atoms. 

The total number of nodes in an abstract atom, as a totality of probabilistic discrete units, its nodal 
measure, is easily defined from Table 2. The number of nodes, actually completed by matter (H-atoms, 
nucleons), and their multiplicity define the relative mass of the abstract atom. 

According to the Table 2, the definite similarity of the geometry of external shells of abstract atoms 
takes place. Arranging the atoms with the same or similar structure of outer shells one under another, in 
accordance with Table 2, we arrive at the periodic-nonperiodic law of spherical spaces.  

If we take the symbols of the real elements of Mendeleev�s periodic table in the capacity of symbols 
of probabilistic objects (atoms) originated from Table 2 (so that their ordinal numbers Z will coincide 
with the atomic numbers of real atoms), we arrive at Table 3.  

We can speak now about a subsequent series of probabilistic elements as �atoms� of the discrete-
wave field. Thus, Table 3 doubles Table 2 in the form of the traditional classification of chemical 
elements in the order of their atomic numbers. In the light of the above-mentioned, Table 3 can be 
regarded as the generalized quasiperiodic law of atomic structure of matter-space-time and possibility-
reality, or as the generalized table of elements. We conditionally designated the last 110th element of the 
5th period (l=5, m=5) in Table 3 as 110Ch (chernobylium).  

 

TABLE 3. Solutions of the wave probabilistic equation 2

2

2

�1�
tc ∂∂∂∂

∂∂∂∂====
ΨΨ∆  presented in the traditional form 

of the periodic law of chemical elements; or the quasiperiodicity as a result of similarity of the 
structure of external shells of abstract atoms drawn in Table 2. 

 
 

5. The structure of carbon atom in the light of new solutions and probabilistic 
elements-isotopes 

 
Thus, elementary atomic objects of matter-space-time have the quasispherical structure, which is 

described by the wave equation in the spherical polar system of coordinates. As follows from the general 
solutions [4-6], elementary quasispherical atoms of matter-space-time and possibility-reality represent by 
themselves the system of characteristic shells with nodal points, expressing the discrete geometry of these 
shells. The number of polar-azimuth nodes Z expresses the ordinal number of the concrete atomic 
structure. 

In the atomic model, in question, H-atoms as the main structural units of any atom are located in its 
potential nodes. The H-structure of atoms with He-components becomes apparent during the rebuilding of 

http://dialectics.janmax.com/workweb/table3.pdf
http://dialectics.janmax.com/workweb/table3.pdf
http://dialectics.janmax.com/workweb/table3.pdf
http://dialectics.janmax.com/workweb/table3.pdf
http://dialectics.janmax.com/workweb/table3.pdf
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atoms, accompanied with the emission of He-components (α-particles). The H-structure of atoms shows 
itself in different chemical (qualitative) reactions, etc. 

A node of space is characterized by the node multiplicity ηηηη  equal to the number of H-atoms in the 
node. For atoms of space and matter, ηηηη is equal to zero, one or two: 

A successive series of solutions of the wave equation of matter-space-time is naturally determined by 
ordinal numbers of principal azimuth nodes, which are a natural bound of each elementary solution. 
These solutions are realized in objective space in the form of atoms of matter-space.  

Ordinal numbers of principal azimuth nodes, we term ordinal numbers of atoms of space and matter.  
The relative mass of atoms, defined in such a way, is equal to the total number of H-atoms located at 

shells of a concrete atom:   
     ),( vivigi

i
gi

k
pkpk ZZZA ηηη ++= ∑∑         (37) 

where k and i are numbers of polar and azimuth shells, respectively;  
Zpk is the number of polar nodes of k-th polar shell;  
Zgi and Zvi are the number of principal and collateral azimuth nodes, respectively, of i-th azimuth 
shell;  ηpk , ηgi and ηvi are numbers of multiplicity of the corresponding nodes. 

According to the above definition, the ordinal number of an atom is 
       Z Zgi

i
=∑ .       (38) 

Collateral extremes define the metastable states. Accordingly, the same probabilistic element ZX can 
be realized in real space with different relative masses. Besides, the relative mass depends on the real 
filling of polar nodes with H-atoms (nucleons). Hence, the same atom of the probabilistic field is 
represented by a series of its own �isotopes�. The relative masses A of the probabilistic isotopes XM

Z  are 
expressed by the formula (37). 

Let us estimate an average relative mass of the abstract probabilistic element 72Hf. According to 
Table 2 and the formula (36), one of the minimal realizations of this element is characterized by the 
relative mass 144240722110)( min72 ====⋅⋅⋅⋅++++⋅⋅⋅⋅++++⋅⋅⋅⋅====Hf . The maximal structure with all completely filled 
nodes has the relative mass 214242722112)( max72 ====⋅⋅⋅⋅++++⋅⋅⋅⋅++++⋅⋅⋅⋅====Hf . Thus, the average mass of the 

abstract element 72Hf is 179
2

)()( max72min72
72 ====

++++====
HfHfHf , whereas the mass number of real 72Hf is 

178.49.  
A similar correspondence of mass numbers of abstract atoms (and their isotopes) of the probabilistic 

wave field and atoms (isotopes) of the real physical space undoubtedly cannot be regarded as a case and 
therefore requires further research within this area. 

In the qualitative spectrum of elements (see Table 2), a particular place takes carbon (Z = 6), an 
element with nodes disposed in one plane. Its outer fully completed shell corresponds to the wave 
numbers l = 2 and m = ±1. Carbon is the basis of organic structures. The discrete geometry of shells of 
carbon, as an atom of bases of life, reminds us, in form, the Russian letter �Ж�. In the Old Slavonic 
alphabet, this letter symbolizes life (in Russian, the word �жизнь� means life). The axis of symmetry of 
the carbon atom contains 5 polar nodes at m = 0 and l = 0, 1, 2. 

The nodal structure of carbon atom C12
6  and its polar-azimuth functions are as shown in Fig. 4. The 

symbolic designation of carbon (Fig. 4c) reflects the definite geometry of disposition of its six principal 
nodes and shows the shortest distances of exchange (interaction) between them.  

The nodal-shell model obtained can account for the structure of different isotopes. By virtue of this, 
the last heavy and light unstable isotopes (that could be obtained in capture reactions at the neutron 
exposure on accelerators) of any element of the periodic table can be predicted theoretically. In particular, 
as we can see from Table 2 (which presents results of theoretical solutions), for carbon these are, 
respectively, C-22 and C-8 (see Fig. 5). Actually, it follows from the experimental data [7], naturally 
occurring carbon isotopes are C-12 (98.89%) and C-13 (1.11%), and unstable isotopes are C-8, C-9, C-10, 
C-11, C-14, C-15, C-16, C-17, C-18, C-19, C-20, C-21, and C-22. 

http://dialectics.janmax.com/workweb/Fig5color.pdf
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Fig. 4. Plots of polar-azimuth functions (a), their extremal points on radial extremal shells (b), and the 
symbolic designation of carbon 6C (c). 

 
Fig. 5. The possible isotopes of carbon. 

 
For helium, the last heavy and light unstable isotopes are, respectively, He-14 and He-2 (Fig. 6); for 

neon � Ne-34 and Ne-16; for titanium � Ti-62 and Ti-36, for nickel � Ni-78 and Ni-50 [7], for neodymium 
� Nd-162 and Ne-108. For the most abundant element in the entire Universe, hydrogen, these are H-6 and 
H-1 (see Fig. 7); the experimental data confirm this [7]; etc. The difference between the shell structure of 

H3
1  and He3

2 , H4
1  and He4

2 , etc. is revealed as well on the basis of the probabilistic atomic model 
described.  

 
Fig. 6. The possible isotopes of helium. 
 

 
Fig. 7. The possible isotopes of hydrogen. 

 
Individual properties, characteristic for every element (isotope) with the same ordinal number Z, are 

kept even when the principal azimuth nodes of external shells contain one nucleon in every node (as takes 
place, e.g., with C8

6 , see Fig. 5, and with He2
2 , Fig. 6). This happens because the geometry of external 

polar-azimuth shells is not changed in this case (of course, during the lifetime of the isotope). Thus, the 
difference between the structure of different isotopes is defined only by the multiplicity of completing of 
all nodes, including polar ones, within the shells, characteristic for a definite atom. The characteristic 
shells of the carbon atom are presented in Fig. 4.  

http://dialectics.janmax.com/workweb/Fig5color.pdf
http://dialectics.janmax.com/workweb/Fig6color.pdf
http://dialectics.janmax.com/workweb/Fig6color.pdf
http://dialectics.janmax.com/workweb/Fig5color.pdf
http://dialectics.janmax.com/workweb/Fig6color.pdf
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The structure of nucleon shells of atoms is responsible for the geometry of molecules of the linear, 
plane, and volumetric forms. 

The carbon atom C has the plane structure of disposition of all its nodes. A surrounding space, 
embracing the carbon, has a spherical shell in the equatorial domain with four vacant azimuth potential 
nodes (light dashed circles in Fig. 8). What the shell is it? 

 

 
Fig. 8.  The carbon structure (a, b) with the near empty spherical shells and nodes designated by dash 

lines; the formation of a methane molecule (c); the conditional designations of the structures are 
drawn on the right. 

 
In hydrocarbon molecules, carbon represents basis. It has the external n-shell (l=2, m = ±1) with four 

potential-kinetic nodes entirely completed with nucleons (H-atoms). Outside this shell, the space of a 
shell with four empty nodes (l=2, m = ±2) follows (see Table 2). It belongs to the subsequent elements of 
the periodic table: 7N, 8O, 9F, and 10Ne. But this shell, in a certain sense, is, simultaneously, the free 
(empty) shell of carbon where four H-units can be localized as well. Such a shell can be called the 
improper shell of carbon. 

When an improper shell is drawn into a process, a new atom does not form. A molecule with the 
structure, repeating the discrete geometry of corresponding atoms of the given shell, is formed. In a case 
with a methane molecule CH4 (Fig. 8), its analog is neon. Under definite conditions, nodes of the 
improper shell can be completed with H-atoms. As a result, a methane molecule CH4 is formed (Fig. 8c).  

Moreover, for fixed l and m, the whole class exists of geometrically similar shells of the l-th radial 
function [6]. In Fig. 8, a dash circumference depicts such a shell (in the plane of disposition of all carbon 
nodes), repeating the outer shell of carbon with four nodes. 

Some other possible structures of hydrocarbons (among innumerable ones), with participation of 
both aforementioned shells, are drawn in Fig. 9. 
 

 
Fig. 9.  The two possible structures of hydrocarbon molecules, CnH2(n+1) (a) and cyclohexane C6H12 (b) . 

 
Herein, the distant binding energy, per one mole of substance, defining the characteristic energy of the 
break of such (chemical) bonds, is defined by the expression [6]: 

   molkkalmolkJNeE A
e

e /4492.103/1211762.433
8 0

2

============
Dπε

,  (39) 

where eD  is the fundamental wave radius and ε0 = 1 g/cm3 is the unit mass density. 
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Actually, upon tearing off the H-atom from a n-node of these (improper) shells, a definite energy is 
spent. According to the experimental data [8], this energy is equal to 101 kkal/mol for CH4 and 104 
kkal/mol for C2H4.  
 
 
6. Applications of the theory to crystals 
 

Because the theory of phase wave probability has the general discrete-wave feature; therefore, it can 
be applicable to an analysis of any discrete-wave material spaces, including also material spaces in the 
solid phase. Such physical spaces exist naturally in numerous minerals. Elementary characteristic 
directions of the probabilistic formation of space are determined by the polar-azimuth functions 

ϕθϕθ mCCY mlmmlpml cos)(),( ,,, Θ==== , it is natural to expect that the characteristic angles of this function 
are materialized in characteristic angles of the crystal forms of minerals. 

Let us verify this supposition by comparing our calculations with experimental data compiled mainly 
by R. Haüy [9] and N. Kokscharov [10]. We will compare the characteristic angles of minerals, 
uninteresting in their composition, with the corresponding angles of the reduced (~) polar function of 
probability )(~

, θmlΘ . Within this comparison, the sign "?" indicates a supposed correspondence. 

We will denote zeros of functions )(~
, θmlΘ  by the symbol ),( mlOs , where s is the number of the 

corresponding root. Analogously, angles of extreme values )(~
, θmlΘ  will be denoted as ),( mlsθ . The 

angles of zeros and extremes, their sums and differences, are characteristic angles of distribution of the 
phase density. Obviously, every angle is characterized simultaneously by two measures: θ  and θπ −−−− . 
Only a small part of results of this comparison is presented in Table 4 (these supplement those presented 
in Table 3.1 of the work [5], pp. 232-253). 

 
Table 4. Characteristic angles )(~

, θmlΘ  and experimental values of the angles in crystal minerals. 
 
Let us consider now the geometry of crystals from the point of view of typical angles of polar 

functions resting upon Haüy's works [9]. 
 
a). The pomegranate with 24 facets [9: p.82; 2*]. The scanning is 24 rhombuses. The angles of 

the rhombuses (Fig. 10a) are correspondingly equal [9: p.79; 1*]: 
441370 ′′′′′′′′′′′′====∠∠∠∠ obac       ! 60.431370)0,2()0,2()3,5( 122 ′′′′′′′′′′′′====−−−−==== oOOO , 

6182109 ′′′′′′′′′′′′====∠∠∠∠ oacd      ! 40.1682109)0,2(2)3,5( 13 ′′′′′′′′′′′′======== oOO  
 

 
Fig. 10.  Rhombic facets of some crystals. 
 

 

b). The lime spar [9: p.36, 7*]. The scanning is 6 rhombuses (Fig. 10b) with angles: 
 747278 ′′′′′′′′′′′′====∠∠∠∠ obac  ! 94.467278)0,3(2 1 ′′′′′′′′′′′′==== oO , 
 3123101 ′′′′′′′′′′′′====∠∠∠∠ oacd  !  06.1323101))0,3()0,3((2)0,3()0,3( 2313 ′′′′′′′′′′′′====−−−−====−−−− oOOOO   

 
c). The pomegranate with 36 facets. The scanning is 12 rhombuses (Fig. 10a) and 24 prolate 

hexagonals (�srgute�, Fig. 10c) [9: p.82; 2*]. 
 747278 ′′′′′′′′′′′′====∠∠∠∠ orgu                 !  94.467278)0,3(2 1 ′′′′′′′′′′′′==== oO ,  

http://dialectics.janmax.com/workweb/table4.pdf
http://dialectics.janmax.com/workweb/table4.pdf
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 820117 ′′′′′′′′′′′′====∠∠∠∠ oset                   !  50.820117)3,6(2 2 ′′′′′′′′′′′′==== oO , 
 7064140 ′′′′′′′′′′′′====∠∠∠∠====∠∠∠∠ ogrsgut   !  53.0664140)0,3(3 ′′′′′′′′′′′′==== oO  
 6582121 ′′′′′′′′′′′′====∠∠∠∠====∠∠∠∠ oeturse     !  75.5582121)3,6(4 ′′′′′′′′′′′′==== oO  
 305182 ′′′′′′′′′′′′====∠∠∠∠====∠∠∠∠ ogpegoe      !  28.025182))3,6()0,3((180 21 ′′′′′′′′′′′′====++++−−−− oo OO  
 
 
7. Final conclusion 

 
The physical structure of atoms can be understood only in the framework of a physical theory. 

Unfortunately, the modern quantum theory, which pretends to the complete description of atoms, is a 
mathematical theory. Accordingly, the quantum mechanical (Schrödinger�s) atomic model does not 
reveal the internal spatial structure of atoms [5, 14] and, therefore, is a weak theoretical basis for applied 
sciences, in particular, for structural researches and nanotechnology.  

Every sane physicist sees this, but not each assumes that the quantum mechanical atomic model, 
originated from the Rutherford-Bohr atomic (nuclear) model and perceived at present as a dogma, can be 
substituted with a physical atomic model, reflecting (simulating) reality at the atomic and subatomic 
levels. Such a fully formed view exists due to the domination of quantum mechanics. Therefore, although 
nanotechnology cannot continually develop successfully enough, actually blindly, without clarifying the 
real physical (spatial, volumetric) structure of individual atoms, this subject is not an objective of modern 
theoretical physics. 

Mendeleev discovered the periodic system in 1869 as an experimental regularity. Since then, the 
nature of such a regularity (more concretely quasiperiodicity) inherent in chemical elements is a greatest 
mystery for physicists and chemists [15]. More than 700 variants of the experimental periodic system 
were proposed during 100 years after its discovery [16]. This status qua in natural science still exists in 
spite of �explanation� by quantum mechanics of the electron shell structure of atoms. The fact is that the 
theoretical variant of the periodic table of chemical elements is absent in modern physics and is still the 
problem for it.  

The understanding of the quasiperiodicity is closely related with understanding of primordial 
fundamentals of natural science. The structure of atoms relates to them. We mean the intratomic spatial 
(volumetric) geometry of disposition of nucleons, being the main constituents of atoms. This geometry 
directly relates to the symmetry, inherent in material spaces at all levels of the Universe including atomic 
and subatomic, without any exception.  

The quantum mechanical atomic model keeps the principal feature of the classical atomic model: it 
deals with the nuclear atomic model and the main role attributes to electrons (electrons� energy structure 
and density), i.e., the particles of the second order in comparison with nucleons. Herein, nuclear physics, 
using some tenths of different theoretical nuclear models, considers also only the energetic structure of 
nuclei. The lasts are regarded as the most massive part of atoms, extraordinarily minute in volume and 
tremendous in dense. The nucleus radius has been accepted to be related to the mass number A of an atom 

by the formula 3
113102.1 A−−−−⋅⋅⋅⋅  cm. Accordingly, a nucleus is usually regarded as a mathematical point in 

comparison with an atom, whose radius is about 10-8 cm. 
In this paper we presented the conceptually new approach to the problem of atomic structure, which 

rests on ideology of dialectical binary numbers [4, 17]. Publications of others, related to the approach 
accepted by the authors, are absent in literature. Relying on this approach, we described here in outline 
the derivation of the internal spatial structure of atoms, morphology of crystals, and the theoretical 
periodic law of atomic structures, where the prevalent role (in formation of these structures) belongs to 
nucleons [4-6, 14].  

The simplest solutions of the wave equation (3) for the spherical wave field of space led to the 
discovery of the spatial structure of atoms. As it turned out, atoms are similar, in form, to Prout�s 
quasispherical H-molecules [18]. The similarity of the structure of external atomic shells in turn led to the 
quasiperiodic series of real atoms of Mendeleev�s table, revealing the nature of the periodic law. 
Accordingly, one can firmly state that properties of individual atoms (elements) are, mainly, defined by 
the nodal structure of their external shells.  

The strict correspondence of mass numbers of obtained abstract atoms (and their isotopes), 
belonging to the probabilistic wave field, and the atoms (isotopes) of the real physical space undoubtedly 
cannot be regarded as a case and, therefore, requires further research within this area. Moreover, such a 
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correspondence points to the necessity to identify the mass of the nodal nucleon with the mass of H-atom. 
Atomic shells consisting of abstract structural units should be regarded then as the shells containing in 
their nodes H-atoms.  

The physical (spatial) structure of carbon and all its isotopes, which were found experimentally [7], 
make clear as a result and presented here as an important example, especially for nanotechnology. 
Apparently, we are on the right way to understanding of the �genetic code� of the structural variety in 
nature, where fullerenes and carbon nanotubes are particular cases of its manifestation. 

On the whole, all data concisely presented above and the other ones, obtained by the authors [4-6, 
14], testify in favor of the wave nature of material spaces, including both microspaces of individual atoms 
(and their compounds) and megaspaces [19]. In particular, the interconnection and interdependency of 
different levels of the Universe prove themselves: at the macrolevel, in characteristic angles of crystals 
(Table 4), and at the microlevel, in the same in magnitude characteristic angles of disposition of nucleon 
nodes in atoms (Table 2). The spectrum of these angles defines the shape of crystals, i.e., morphology 
[20] and symmetry [21] of material spaces. Because of this, we can conclude too that the wave 
probabilistic equation (3) contains information about symmetry in nature. 

Thus, there are potentially enormous benefits in prospect, in particular, for nanotechnology, from the 
further research within this area devoted, in essence, to the revelation of the genetic code of nature at the 
atomic and subatomic levels.  
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