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The Myth about the Quantum Electron Spin of 2/h  
and Reality of Wave Processes 
 

 
1. Introduction 
 

In a theory of Einstein and de Haas’s experiment, the magnetic moment of a closed electric circuit 
(an electron orbit) was accepted to be equal to 

      IS
ce
1====µ ,    (1.1) 

where c is the speed of wave motion of the space surrounding the H-atom, I is the average value of an 
orbital current, and S is the area of the orbit. 

Only one half-wave of the fundamental tone with one node, in which an electron is localized, is 
placed on any electron orbit of the radius r. A wavelength of the fundamental tone, its period and the 
circular frequency are equal, respectively, to 
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where υ is the wave speed on an orbit. 
The average value of the electron wave current I on an orbit, as any harmonic value, is defined by 

the formula 
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is the amplitude of the electron current. Thus, the average current of an electron orbit is 
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where Te is the period of electron’s revolution along an orbit. 
Taking into account the equality (1.4), the magnetic moment of an electron orbit, i.e., the 

magnetic moment of a harmonic wave of the fundamental tone, is 
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At the stationary orbits (see the paper �Wave Quanta�), υ
υ

= 0

n
 and r r n= 0 ; therefore, the 

magnetic moment of any electron orbit is the same and constant: 

     conster
c

er
ce ============ 0

0υυµ .   (1.5a) 

The ratio of the orbital magnetic moment of the electron µe to its orbital moment of momentum 
00rmrm υυ ========h  is 
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This relation, confirmed experimentally and obtained theoretically by the authors on the basis of 
different approaches, including the wave one, is beyond any doubts. From this relation, it uniquely 
follows that an electron does not have the spin of one half of its orbital moment of momentum, as well 
as not having the corresponding magnetic moment of one half of the orbital magnetic moment of 
electron. 

Physics of the 20th century built the orbital magnetic moment on the basis of the mechanical 
model of uniform motion of the electron regarded, in the classical spirit of the definition of a current, 
as a flow of electric charge, “electron liquid (or gas)”, in a substance. According to such a model the 
average value of current was accepted to be equal to the ratio 
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     eTeI /==== .     (1.7) 
From this formula, the magnetic orbital moment, half as much than the real value, followed: 
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Accordingly, the ratio of the orbital magnetic moment to the orbital moment of momentum of the 
electron turned out to be half as much than the real ratio (1.6) confirmed experimentally: 
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At that time, instead of seeking the error, which led to this ratio, the hypothesis-fitting was 
accepted. According to this hypothesis, the proper magnetic moment µs equal to the orbital magnetic 
moment µe was attributed to the electron. Then, naturally, in order to reduce in the correspondence 
with the proper magnetic moment, the “proper moment of momentum”, “spin” with the measure 2/h  
was also attributed to the electron.  

An appearance of the correspondence of the theory to the experiment was created as a result of 
such a mathematical adjustment:  
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The spin myth gave birth to the theoretical spinomania. Of course, an electron has its own 
magnetic field and magnetic moment and moment of momentum. But, as the calculations show, the 
last is insignificantly small in comparison with the orbital moment. Let us imagine that the proper 
moment of momentum of Earth is equal to one half of its orbital moment of momentum. The Earth 
cannot endure such a huge moment and will be destroyed. The same situation meets an electron with 
the “spin” equal to h)2/1( . The azimuth speeds of the electron space must have values approximately 
in 100 times exceeding the speed of light. The absurdity is absolute. 

The Dirac equation, created for the proof of the correctness of an introduction of the spin, 
“proved” its “existence”. Thus, the formal correspondence of the “theory” with the experiment was 
realized due to the gross fitting. However, the correspondence of a theory with the experiment does 
not quite mean that this theory is true, because under the word a theory is hidden very often a primitive 
eclecticism.  

For this reason, the Dirac equation is false and has significance only from the point of view of 
history of the philosophical and logical errors of the past. 

We will consider this problem (and relevant ones) in detail, following dialectical physics, on the 
basis of the wave calculations of the orbiting electron. 

 
 
 

2. Basic notions 
 

The notions, which approximately reflect the real objects and phenomena of nature, are in the 
basis of physical theories.  

Let us agree to call the notions, which quite exactly describe the properties of an object of 
thought, objective notions (Yes-notions). In opposite case, the notions will be called subjective notions 
(No-notions). In a general case, a clear boundary between objective and subjective notions does not 
exist. 

Therefore, if an objective notion contains elements of subjectivism, we call it the objective-
subjective notion (Yes-No-notion). If a subjective notion contains elements of objectivity, we call it the 
subjective-objective notion (No-Yes-notion). 

Such a classification of notions more completely corresponds to basic judgements of dialectical 
logic: Yes-Yes, Yes-No, No-Yes, and No-No, which reflect the real picture of intellectual thought. In 
conformity with these judgements, the absolutely objective Yes-notions, strictly speaking, should be 
called the objective-objective notions (the notions Yes-Yes) or briefly Yes-notions. Analogously, the 
absolutely non-objective notions should be called the subjective-subjective notions (the notions No-
No) or briefly No-notions. 
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The philosophy of physics of the 19th century has regarded, and continues regarding, notions as 
only subjective constructions. And many scientists assume that notions have a conditional character of 
definite covenants. This is a point of view of the philosophy of subjectivism, machism, and 
pragmatism. 

On the contrary, in dialectical philosophy, a notion of the high scientific level must, first of all, be 
the logical construction, which more exactly adequately reflects the contents and form of an object of 
nature with this notion. Only then, notions could be regarded as scientific agreements. 

Subjective elements of notions lead to misunderstanding of objective properties of objects and 
phenomena of nature. In order to make theories formally consistent, with experiments, subjective 
notions generate additional hypotheses and interpretations. The lasts introduce in science nonexistent  
“physical properties”, which are formal mathematical constructions far from reality. 

As a rule, at the macrolevel, notions are objective ones on the whole, because their originals (we 
mean objects to which these notions are ascribed) are visible with the naked eye. Therefore, the 
objectivity of such notions is verified easily.  

At the microlevel, everything is more complicated, because the objectivity of notions is very 
difficult to verify. By virtue of this, in modern physics, the fully developed practice of the creation of 
formal hypotheses and interpretations exists. Such formal hypotheses and interpretations only do harm 
to science, creating an illusion of resolving of a problem. 

We will consider the dialectics of objectivity of notions with an example of periodical processes. 
Let us assume that a wave of a frequency ν is propagated along a circular trajectory of a radius r. 

If p waves are placed on the circular orbit, then the linear, λ, and radian (relative), λϕ, measures of 
wavelength will be defined by the relations: 

     
p
rπλ 2====  ,   

pr
πλλϕ

2======== .     (2.1) 

Between the linear velocity υ of the wave front on the circumference and the circular frequency 
(the angular velocity) of revolution ωorb (or ωe), the following relations take place: 
      rorbωυ ==== ,       (2.2) 

      orb
orb

orb T
πνπω 22 ======== ,     (2.3) 

where Torb and νorb are the period and frequency of revolution of the wave front. 
In the circular motion, the length of a circumference, C=2πr, is the period-quantum of extension 

(length); and the period Torb is the time circumference or the period-quantum of time extension 
(duration). 

Obviously, the wave period T is related with the wave-circumference Te (or Torb) as 
      pTT e /==== .       (2.4) 

The relation between the wave frequency ν and the frequency of revolution νe takes the form 
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The equality (2.5) defines the analogous relation between the circular frequency ω and the 
circular velocity of rotation ωe of the wave: 
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In the case, when p = 1, i.e., λ = 2πr, the wave will be called the unit wave and its length will be 
denoted as λe. For the unit wave, the wave frequency and the frequency of its rotation are equal: ω = 
ωe. 

If 2
1====p , we deal with the circular frequency of the wave of the fundamental tone 

      eωω )( 2
1==== .       (2.7) 

It is convenient to express arbitrary circular frequencies ωp through the circular frequency of the 
fundamental tone as 

       ep
pp ωωω
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======== ,      (2.8) 
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where p is the number of half-waves placed on the circumference. Then, elementary potential-kinetic 
waves of an arbitrary frequency take the form 
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Ψ .      (2.9) 
 
 

3. The symmetrical definition of a current I 
 

Classical physics defines the value of a current flowing in a conductor as the “quantity of 
electricity being conveyed by the motion of electrons or ions through the cross-section area of the 
conductor per unit time”. However, a current is not the flow of an “electric liquid”, it is the 
complicated wave process. It takes place both on the left and on the right from the cross-section. And 
the value of current represents by itself the rate of change of this process (Fig. 3.1). 

 

 
 

Fig. 3.1. On the definition of the notion a value of current; the spiral trajectory B, enveloping a 
conductor, symbolizes a magnetic field; cR and cL are centers of masses of elements of the 
field, belonging to the intervals Ll∆  and Rl∆ .   

 
By this reason, one can state that the common definition of the value of current I is related to the 

objective-subjective notion. 
Moreover, the definition of the average value of current takes into account only the “quantity of 

electricity” displaced on the right side from the cross-section S, RqR lSQ ∆∆ ρ==== , localized at the part 

tlR ∆∆ υ==== : 

      υρ S
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,    (3.1) 

where qρ  is the average “density of electricity” and RQQ ∆∆ ==== . 
If we regard the formula (3.1) as the formal convention, there are no problems from the point of 

view of pragmatism. 
In dialectics, this definition has evident subjective features, because it does not take into account 

the “quantity of electricity” approaching from the left (directly to the cross-section S), 

LqL lSQ ∆∆ ρ==== , where tlll RL ∆∆∆∆ υ============ .  
 This second component of the “quantity of electricity”, unconditionally, takes part in the 

formation of the wave process in an arbitrary cross-section S. It influences the objective measure, 
called the “value of electric current”, which is defined by means of physical apparatuses independently 
of our understanding of its nature. Moreover, as we will show further, the subjectivism of the formula 
(3.1) gave birth to the spin hypothesis, which does not reflect reality. 

In nature, the binary symmetry dominates. And in any cross-section of a conductor, we deal with 
the symmetry of the process of motion at the microlevel. 

Accordingly, the definition (3.1) cannot be recognized as correct, because, in the domain of a 
cross-section S, the current and the ambient magnetic field, as the wave process, are formed by both 
the incoming and issuing “quantity of electricity”. Their sum defines the “passing quantity of 
electricity ∆Q” 
      RL QQQ ∆∆∆ ++++==== .     (3.2) 
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The following average current (in a conductor, in the domain of a cross-section S) corresponds to the 
quantity (3.2): 

    υυρ eSnS
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where υ/lt ∆∆ ====  is the time of the “passing quantity of electricity ∆Q”; e is the quantum of the 
“quantity of electricity”, which expresses the measure of some wave electric property E; en====ρ  is 
the density of the electric property E; and n  is the average concentration of carries of the electric 
property E. 

The symmetrical definition (3.3) reflects the objective symmetrical structure of the field of a 
current in the domain of a cross-section. Practically, we are interested only in the value of a current, 
which does not rest evidently on the real measuring of the “quantity of electricity” ∆Q.  

Therefore, the one-sided character of the definition of the average value of current (3.1) in no way 
influences measurements, which are normal in engineering and scientific practice. 

However, as soon as a theory analyzes the unit phenomena, the difference of the two formulae, 
(3.1) and (3.3), influences the objective understanding of a physical process and can lead to the 
erroneous theoretical conclusions. 

The formula of the average value of current (3.3) has a general character and relates to currents of 
different wave properties, if ∆Q is the measure of some wave property. 

Let us consider the average value of the current of an orbiting electron, relying on the formula 
(3.3). The average density of “electricity” qρ  of the electron orbit is 

      ne
rS
e

e
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π
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,     (3.4) 

where      n
rSe

=
1

2π
       (3.5) 

is the electron concentration and Se is the cross-section of the electron physical orbit (which differs 
from the mathematical orbit with the zero cross-section). 

From this, we obtain the average current of the orbiting electron: 
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where 
υ
πrTorb

2====  is the period of electron’s revolution. 

The formula (3.6) can be also obtained in the other way. Let us consider the average rate of 
motion along a circumference within the interval from the cross-section S+ to the polar opposite cross-
section S−, as is shown in Fig. 3.2. 

 

 
 

Fig. 3.2.  The closed circuit; Past and Future are, respectively, the limiting past and the limiting 
future, during the period of revolution Torb; CR and CL are, respectively, the right and left 
“half-circumferences” of the future and the past. 

 
The right and left half-circumferences, CR and CL, define maximal displacements from the right 

and left sides of the cross-section S+. 
The half-space of an orbit, eeRR rSSC π====⋅⋅⋅⋅====Ω  (where Se is an arbitrary cross-section), is the 

half-space of the motion from the section S+, whereas the half-space eeLL rSSC π====⋅⋅⋅⋅====Ω  is the half-
space of the motion to the section S+. 



 

Copyright © 2001 George Shpenkov 

6

The half-spaces, RΩ  and LΩ , are the spaces of the past and future motions with respect to the 
cross-section S+, which in the cross-section S− are closed on to each other. Both time fields define the 
time field of passing of the electron through the cross-section S+. 

The half-circumference CR, as the wave-beam, is circumscribed by the electron, as the wave front, 
during the half-period of electron’s revolution along the orbit. In the half-space of motion from the 
cross-section S+, the following relation expresses the average velocity of moving off: 

     
orborborb T

r
T

e
T
eI πυ 22

2
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================ ,     (3.7) 

where rCe R π======== . During the following half-period, the average velocity of approaching to the 
cross-section S+ will be the same in value. 

The average velocity of moving off and approaching to the section S+ is, simultaneously, the 
average velocity of passing through the cross-section S+. 

Since the sections, S+ and S−, are arbitrary, the formula (3.7) is valid for any cross-section. 
If me ====  is the electron’s mass, then the average current of mass exchange IM through the cross-

section S+ will take the form 

      I
m
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orb
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      (3.8) 

or      I
m
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.       (3.9) 

This is the average current of mass exchange from the section S+ to the section S−. During the 
second half-period, the mass exchange from the section S−  to the section S+ will take place with the 
same velocity. The sections, S+ and S−, are arbitrary polar opposite sections, therefore, the formulae 
(3.8) and (3.9) are valid for any cross-sections. 

The rate of motion of an electron’s electric property e from the cross-section S+ will be defined by 
the formula, analogous to (3.7): 

      
orborb T
e

T
eI 2

2
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======== .      (3.10) 

The same will be the rate of motion of an electron’s electric property e to the cross-section S+.  
Accordingly, this value will be the average velocity of passing of an electron’s electric property e 
through any cross-section. In essence, the current (3.10) represents by itself the “electric” orbital 
current of the electric exchange and self-exchange. 

The average value of current (3.10) is consistent with the other calculations of the average current 
in wave processes. The asymmetrical formula (3.1) results in the average value of current, which is 
half as much, i.e., 
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This value is not in conformity with Einstein’s−de Haas’s experiments. 
 
 
 

4. The circular wave motion and a current 
 

Any particle E, as the wave structure moving along a circumference, represents by itself only one 
wave node on a circular orbit. Accordingly, only one half-wave of the fundamental tone is placed on 
an orbit and the wavelength of the fundamental tone is equal to the two circular trajectories−half-
waves: 
      rπλ 4==== .       (4.1) 

This conclusion is confirmed by the elementary solution of the wave equation, which is described 
by the Bessel wave function of the order 2

1 . 
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Within one particular wave λ, an arbitrary object E twice passes every point of an orbit. The 
particular wave half-period Torb represents by itself the particular period of revolution of an object E 
along an orbit. At the same time, during any period of rotation, the object turns out to be twice in any 
point of the circular trajectory. 

The motion in inner space of a circular trajectory, along two successive half-circumferences, 
occurs in one direction (clockwise or anticlockwise). In this sense, they affirm each other. This can be 
expressed briefly by the logical judgement Yes, which affirms the absent of a contradiction (Yes = ”no 
contradiction”). 

In the outer space, these motions are mutually opposite in direction. In this sense, they negate 
each other. This can be expressed by the brief logical judgement No (No = “a contradiction exists”). 

Thus, as inner absolute motions, the motions along two successive half-circumference are one-
directed. Simultaneously, the same motions in outer space, as mutually relative ones, are opposite-
directed. This also shows the contradictoriness of the circular motion. 

If Sp is an arbitrary potential point of a wave of the fundamental tone (i.e., its node), then, the 
conjugated diametrically opposite point Sk will be the kinetic point of the wave (its loop) (Fig. 4.1). In 
the longitudinal wave of the fundamental tone, the rectilinear amplitude of displacement is equal to the 
diameter of a circumference, 
       ram 2==== .      (4.2) 

The amplitude of the curvilinear displacement along a circumference is equal to half-
circumference, i.e., quarter-wave:  
       rAm π==== .      (4.3) 

 
Fig. 4.1.  The amplitudes of displacement, am and Am, in a wave of the fundamental tone on a 

circumference; Sp and Sk are the potential and kinetic points (nodes) of the wave; the 
kinetic node represents the center of a loop of the wave. 

 
If Torb is the half-period of the wave of the fundamental tone, then, the following expressions are 

valid: for the wave period 
       orbTT 2==== ,      (4.4) 
the frequency of the fundamental tone  T/1====ν ,      (4.5) 

the velocity of wave motion   
orbT
R

T
πλνλυ 2============ ,    (4.6) 

and for wavelengths of the fundamental tone and the unit wave 

     Tυλ ==== ,  orbe Tυλλ ========
2
1

.    (4.7) 

In the wave of the fundamental tone, the half-period Torb is the time of the wave revolution of an 
object along a circumference, which defines the frequency of revolution (frequency of half-wave): 

      νν 221 ============
TTorb

orb .     (4.8) 

The center of the wave front of the electron half-wave of the fundamental tone circumscribes one 
circle. Such motion represent by itself the superposition of two mutually perpendicular potential-
kinetic displacements with respect to the center of an orbit (Fig. 4.2): 
    )exp( tir orbx ω⋅⋅⋅⋅====Ψ , )exp( tiir orby ω⋅⋅⋅⋅====Ψ ,   (4.9) 
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where orborb πνω 2====  is the circular frequency. These displacements are the unit potential-kinetic 
oscillations, describing the electron’s motion as the center of the wave front of the orbital wave. They 
form the frontal waves, when the orbit moves along the Z-axis with the velocity υz: 

   )exp( αω ++++−−−−⋅⋅⋅⋅==== zktir zorbxΨ ,   )exp( αω ++++−−−−⋅⋅⋅⋅==== zktiir zorbyΨ , (4.10) 

where zorbzk υω /====  is the wave number. 
 

 
 

Fig. 4.2. The frontal Ψx-oscillation (wave), ±±±±
xpA  and ±±±±

xkB  are its potential and kinetic nodes (a); a 
graph of the Ψx-wave, xpΨ  and xpxk iΨΨ ====  are its potential and kinetic components (b); 
the frontal xy iΨΨ ==== -oscillation (wave) with the potential and kinetic nodes (c). 

 
The frontal and orbital waves, as the waves of superstructure over the basis (subatomic) space are 

related to different levels of the motion on an orbit. The orbital waves are the inner waves of the orbit, 
whereas the frontal waves are the waves of the front of the orbit. The frontal and orbital waves of 
superstructure can induce, if a system is open, in the outer space of the basis, the corresponding basis 
waves. The lasts are propagated with the velocity c, i.e., the wave velocity of basis space. 

In each of the frontal waves, the average rate of displacement along the axes, x and y, is defined 
by the ratio of four amplitudes of displacements am to the period of the wave of the fundamental tone: 
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m

T
r

T
r

T
a 484

============υ .     (4.11) 

In such a case, the amplitude frontal rate of displacement is  

      
orbT

r
T

r ππυπυ 24
2

============      (4.12) 

and      rT πυλ 4======== .      (4.13) 
If we divide the wave (4.13) by the wave velocity c in the field-space outside the circuit, we will 

obtain the time wave 
      rTT π4==== ,       (4.14) 
where      crTr /====        (4.15) 
is the time radius-period or the radial period. 

The time wave of the fundamental tone is defined, in absolute units, by the measure 

      πλ 4========
R

T T
T

.      (4.16) 

The kinetic points ±±±±
xkB  of the Ψx-wave are defined by the electron’s motion in the points BT and 

BU. The time density I of any kinetic wave property e, related with the kinetic points, is equal to the 
product of the number of points and some wave property e divided by the corresponding period: 

      
T
e

T
eI

orb

42 ======== .      (4.17) 

This also concerns such a wave property as the “electric charge”. 
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5. A current in potential-kinetic fields of a circular pendulum and of a string 
 

Let us turn to the motion of the circular mathematical pendulum. The circular pendulum of mass 
m is connected with an elastic spring, fixed in a point A inside of an absolutely smooth horizontal 
transparent hollow ring of radius r (Fig. 5.1). The spring is shown, conditionally, in the form of a thin 
thread. The point A is a point of the unstable states of rest: A+ and A− (potential points). The point B is 
a point of the equilibrium state, represented by the two states of motion: B+ and B− (kinetic points). 

Two circular motions represent the complete swing of the pendulum. The swing starts in the point 
A in the state A+. In this state, the spring is completely compressed and the displacement from the 
equilibrium state B is equal to the kinetic amplitude of displacement with the positive sign: ra π++++====++++ . 
The pendulum passes the point B with the positive maximal velocity in the kinetic state B+. Then, it 
reaches the point A in the potential state A−. In this state, the displacement is equal to the kinetic 
amplitude of displacement with the minus sign: ra π−−−−====−−−− . The half-period of the swing is completed 
in the state A−. Along with this, one circular motion is completed. The second half-period begins from 
the state A−.. Then, the pendulum passes the point B in the kinetic state B− with the negative maximal 
velocity and returns in the initial state A+. The period of the swing is T and the half-period TTe 2

1====  is 
the time of revolution along a circle. 

 

 
Fig. 5.1. The circular mathematical pendulum (a) and a graph of the potential-kinetic field of its 

motion (b). 
 

The potential-kinetic displacement of pendulum along a circle is 
    tiataaeiaaa ti

kp ωωω sincosˆ ++++========++++==== ,    (5.1) 

where ap and iak are the potential and kinetic displacements, ra π====  is the amplitude of displacement 
from the equilibrium state B up to the point of rest A. 

The field of potential-kinetic velocity 

      tiaei
dt
ad ωωυ ========
ˆˆ       (5.2) 

is characterized by the average value of velocity 
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∫∫∫∫ ,   (5.3) 

where rC π2====  is one half-oscillation and Te is the half-period of oscillation (the time of revolution 
along a circle). 

If the circular motion is periodic, the form of the function of velocity does not matter, because the 
average velocity in all cases will be equal to the ratio of the circumference length by the period of 
revolution. In particular, if the motion is uniform, we have 

    
eT
r

T
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TT
Cdt

T T

ππυυ 24422 0

2
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−−−−

.    (5.3a) 

One can say that the uniform motion along a circle is the amplitude wave motion with the two 
periods, every of which represents by itself one circular motion. Each circular motion represents by 
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itself the synthesis of the two plane polarized unit oscillations-waves along the mutually perpendicular 
directions. 

The potential-kinetic mass of the pendulum, kp
ti immmem ++++======== ωˆ , as the mass of 

superstructure, describes its potential-kinetic state. It represents the mass potential-kinetic wave. And 
the potential-kinetic field of change of state of the mass is the wave field of the potential-kinetic 

charge: mi
dt
mdq ˆˆˆ ω======== . In turn, the field of change of the potential-kinetic charge, 

     mqi
dt

md
dt
qdI ˆˆˆˆˆ 2

2

2

ωω −−−−================ ,     (5.4) 

is the field of potential-kinetic (kinematic) current (the field of superstructure). 
In the discrete potential points, A+ and A−, characteristic wave states of mass and charge are equal, 

respectively, to 
  A+ : $ ( )m me mi t

t
0

0
= =

=
ω ,   $ $ ( )q i m i m= =ω ω0 .   (5.5) 

  A− : $ ( )m me mi t
t T0

2
= = −

=
ω ,  $ $ ( )q i m i m= = −ω ω0 .  (5.5a) 

Analogously, in the kinetic points, B+ and B−, we have 
  B+ : $ ( )m T me imi t

t T
1

4
4

= =
=

ω ,  $ $ ( )q i m T m= = −ω ω1
4 . (5.6) 

  B− : $ ( )m T me imi t
t T

3
4 3

4
= = −

=
ω ,  $ $ ( )q i m T m= = +ω ω3

4 . (5.6a) 

Thus, in the potential points, the charges are potential; in the kinetic points, the charges are kinetic. 
The average value of the potential current, in any cross-section, is defined by the formula: 

  
e

ti

T
qi

T
qiemi

T
dtm

T
dtI

T
iI

TT T

242ˆ2ˆ2
00 0

2

22 2

============−−−−========
−−−−−−−− −−−−

∫∫∫∫ ∫∫∫∫ ωωω ,   (5.7) 

where ωmq ====  is the amplitude of the kinematic charge. Analogously, the average value of the 
kinematic current, in any cross-section, is 

      
eT
q

T
qI 24 ======== .      (5.7a) 

In the uniform motion along a circumference, as an amplitude wave, the value of current in a 
cross-section of any point B (Fig. 5.2) has the same value: 

 (((( ))))
eT
q

T
qm

T
mm

T
q

T
dq

T
Idt

T
I

T

T

T

T

T

T

244)()(2222
4

3

4

4
3

4

4
3

4

============−−−−−−−−================ ∫∫∫∫ ∫∫∫∫ ωωω .  (5.8) 

 
 

Fig. 5.2. On the calculation of the average current, flowing through a cross-section B, if only one 
charge q circulates. 

 
Let us now consider a string in the form of a circle with two ends fixed in one point A. In such a 

string, one can excite the circular polarized transversal wave. Such a string represents by itself an 
elementary pattern of the wave beam, in which the transversal potential-kinetic wave oscillations take 
place. An equation of the potential-kinetic beam-wave has the form: 
     tiiksksti eaieaea ωϕϕω 00 )(ˆ ++++±±±±++++±±±± ======== ,     (5.9) 
where      iks

s aea ±±±±====ˆ        (5.9a) 
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is the potential-kinetic amplitude of transversal displacements. This amplitude is equivalent to the 
circular motion with the radius ksars cos==== , where s is the length along the beam, reading off the 
point A, and ϕo is the initial phase of oscillations. The time component of the wave field of a string is 
      ti

t ea ω====ˆ .       (5.10) 
In such a field, the longitudinal mass wave-beam is 
     tiiksksti ememem ωω ±±±±±±±± ======== )(ˆ .     (5.11) 

The mass potential-kinetic wave defines the potential-kinetic longitudinal current 

     tiiksemem
dt
qdI ωωω ±±±±−−−−====−−−−======== 22 ˆˆˆ .    (5.12) 

Its average value, in time and space, is defined by the integral 

    
e

i

T
e

T
eeeedI

i
I 2421ˆ

2
2 2

2

====================
−−−−∫∫∫∫ ω

π
ω

π
ϕ

π
π

ϕ
π

,   (5.13) 

where 0ϕωϕ ++++±±±±==== kst  is the phase of the wave, 0/υω====k  is the wave number corresponding to the 
wave velocity υ0, s is the curvilinear length along the beam of current I and of charge AMe ω==== , MA is 
the mass of one atom of a string and I is the elementary kinematic current related with one atomic 
chain along a string. 

If the string consists of N atomic chains, the current increases N times, however, the form of the 
formula does not change. In this case, the charge also will be N times as much: NMe Aω==== . The wave 
perturbation is transmitted along a string in the form of motion from one to another atom with the 
average rate υ0. With that, the integral mass transfer does not take place. The last happens at the level 
of individual local perturbations along a string. 

Since the transversal oscillations also take place, the transversal circular current of individual 
charges AMe ω==== , flowing along a circle of the radius ksars cos====  with the velocity ss rωυ ==== , takes 
place as well. 

As in the case of the transversal current, the same period and charge define the average 
longitudinal current; therefore, both currents are always equal. 

 
 

6. Some parameters of the wave field of gravitation related with the time wave 
of the fundamental tone 

 
Let us consider the Earth’s motion, which we assume, for simplicity, is circular. The gravitation 

constant defines the circular frequency 
     14

0 10156956336.94 −−−−−−−−⋅⋅⋅⋅======== sGg πεω .   (6.1) 

Here, we accept 231810672590000,6 −−−−−−−−−−−− ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅==== scmgG .   (6.1a) 
Using the formula of the time wave of the fundamental tone (4.16), we arrive at the gravitational 

radial period 

     sT
gg

T
g

410372330516.14 ⋅⋅⋅⋅============
ω

π
ω
λ

,    (6.2) 

which expresses the central exchange (central interaction) and defines the azimuth time wave 
 069.065723295168593.23206935.8622624 smh

g hsTT ⋅⋅⋅⋅====⋅⋅⋅⋅====⋅⋅⋅⋅======== π .   (6.3) 

This wave is equal to two Earth’s days, which form two circular cycles-half-waves. Each of the 
cycles-half-waves is equal to one day. 

On the basis of (6.3), we find the period of revolution Te 
   smh

ge hsTT 06572395168593.2306935.862262 ≈≈≈≈============ π ,   (6.4) 

It is equal to the Earth’s day. The corresponding angular velocity of the Earth’s rotation is 
151029211501.7 −−−−−−−−⋅⋅⋅⋅==== seω  and the time day radius is 
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     s
T

T e

e
R

41037134425.1
2

1 ⋅⋅⋅⋅============
πω

.    (6.5) 

The last is equal, practically, to the gravitational radial period that points out the resonance state of 
Earth’s motion in the gravitational field of the Universe. 

The period of Earth’s revolution around the Sun defines the half-wave of Earth’s orbit. In such a 
case, the time wavelength is equal to two years: 
      sT

710149458919.3 ⋅⋅⋅⋅====λ .    (6.6) 
Two potential states-winters and two kinetic states-summers represent the Earth’s wave. Let us 

compare the Earth’s period with the period of mathematical pendulum. There (see Fig. 5.1), winters 
are represented by the potential domains with the centers A+ and A−; summers are represented by the 
kinetic domains with the centers B+ and B−.  

The domains of Earth’s wave (A+, B+, A−, and B−) are devided by four transitional climate states – 
two springs and two falls. The beginning of every year in many countries coincides with the potential 
center that is quite logical. Thus, the 2000-year is the 1000th wave cycle in the gravitational field. 

If we take, as the reference value, the Earth’s day in the 2000-year, equal approximately to 
23h56m04s, we should accept the gravitational constant in that year equal to 
    2318

0
2 10682160218.64/ −−−−−−−−−−−− ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅======== scmgG g πεω .   (6.7) 

This value is at the level of the fundamental measure: 

    

.10)lg
2

6(

10)682188177.06(
4

2318

2318

0

2

−−−−−−−−−−−−

−−−−−−−−−−−−

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅++++====

====⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅++++≈≈≈≈====

scmge

scmgG g

π
πε
ω

   

If we accept this value as the “independent (absolute)” standard, we obtain 

  182318
0 10lg

2
6410lg

2
64 −−−−−−−−−−−−−−−−−−−− ⋅⋅⋅⋅






 ++++====⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅






 ++++==== sescmgeg

ππππεω  (6.8) 

and     1410163561161.9 −−−−−−−−⋅⋅⋅⋅==== sgω .      (6.8a) 

Further, we have  sT
gg

T
g

410371341381.14 ⋅⋅⋅⋅============
ω

π
ω
λ

     (6.9) 

and    92.03562392016.861632 smh
ge sTT ============ π ,   (6.10) 

    92.03562328403.1723274 smh
g sTT ⋅⋅⋅⋅============ π .   (6.11) 

As we see, everywhere, the fundamental measures of the quantitative spectrum on the basis of the 
fundamental period elg2π====∆  show their worth. With that, the number π is the absolute amplitude of 
the circular wave, if one expresses the amplitude through radii of orbits: 
      π======== rAa mm / .      (6.12) 
 
 
7. The parameters of a circular electron orbit and Einstein’s and de Haas’s 

experiments 
 

Returning to the electron’s circular motion, let us assume that the electron orbits with the 
frequency ωe. Then, its circular (rotatory) transversal “magnetic” charge qe, which defines the kinetic 
(“magnetic”) cylindrical field of the electron orbit, is 
      ee mq ω==== .       (7.1) 
The corresponding average transversal (“magnetic”) current is 

      
e

ee
B T

q
T
qI 24

======== .      (7.2) 

The average current (7.2) defines the orbital transversal kinetic (“magnetic”) electron’s moment 
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      0
01 rq

c
SI

c eBorb
υµ ======== .     (7.3) 

The ratio of the moment (7.3) and the orbital moment of electron’s momentum on the Bohr first 
orbit, 00rmorb υ====h , defines the wave number of the subatomic wave field of matter-space (Fig. 7.1): 

     e
eee

orb

orb k
cmc

q
rcm
rq

================
ω

υ
υµ

00

00

h
.  (7.4) 

The formula (7.4) is in conformity with the experiment, if we will transform the fictitious 
“electric” and “magnetic” units into the objective units of nature. 

 

 
Fig. 7.1. The orbiting electron in the space of the H-atom and its transversal kinetic cylindrical B-

field. 
 

We can now clarify the nature of the electron charge e, which enters in the expression for the total 
energy of the orbiting electron (where it is regarded as the charge of the central field): 

     
00

22
0

0

22

4242 r
em

r
emE

πε
υ

πε
υ −−−−====−−−−==== .    (7.5) 

Because 
0

2
0

2
00

2

4 r
m

r
e υ

πε
====  and electron mass is 3

04 erm πε==== , we obtain 

    
ee

e

ee

e

e

e
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rq
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rm

r
rmr

rme 2
0

2
0

2

32
0

2
0

22
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2
0
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0

0
2
00

2 4
4

υ
υ

ω
υωυπευπε ================ . 

Taking into account that in the cylindrical field ee rr 2
0

2
0 υυ ==== , we arrive at 

      ee mqe ω======== .      (7.6) 
Thus, the central “potential” (“electric”) charge e and the transversal “kinetic” (“magnetic”) 

charge qe are equal in value. One can come to the same conclusion on the basis of the following 
consideration. The orbiting electron forms the cylindrical wave field, which is limited from below by 
the electron radius re,. Along the axis of the trajectory, each electron state corresponds to a part of the 
orbit, equal to the electron’s diameter with the area of the cylindrical surface 
      242 eee rdrS ππ ======== .     (7.7) 
On this surface, the transversal electron flow is defined by the transversal (cylindrical) charge 
      0

2
0 4 ευπευ eeee rSq ======== .     (7.8) 

On the other hand, the central electron flow is defined by the longitudinal (spherical) charge 
      0

24 ευπ eere ==== .      (7.9) 
Accordingly, we again arrive at the conclusion that eqe ==== . 

In addition, some remarks on the magnetic moment. The electron’s magnetic moment and 
electron’s moment of momentum at the orbital motion are the different measures of the same wave 
process. Indeed, any system, for example, a metallic rod suspended by a thin elastic thread, can be 
regarded as a closed system (of course, under a definite approximation). Let its initial moment of 
momentum be equal to zero. This means that its moment of macromomentum, as a solid, and the total 
moment of micromomenta of all orbital electrons form the total moment of momentum of the system 
equal to zero: 
      0====++++==== micromacroS LLL .     (7.10) 
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Under the action of external fields, the ordering of moments of momentum of individual orbital 
electrons can take place. As a result, the general change of the moments of micromomentum arises. 
This phenomenon is accompanied with an appearance of the moment of macromomentum of the rod, 
so that 
      0====++++==== micromacroS LLL ∆∆∆ .    (7.11) 

Let us further introduce the kinetic “magnetic” moment of the orbital electron, as the product of 
its orbital moment of momentum h  by the wave number ck ee /ω====  of the field of the subatomic 
(“electrostatic”) level of matter:    

     er
c

rm
c

k e
eorb

υυωµ ============ h .   (7.12) 

In such a case, the equality (7.11) can be presented as 
  0)( ====−−−−++++ ∑∑∑∑

n
nemacroe kLk h∆    or     0====−−−−∑∑∑∑

n
orbnmacroe Lk µ∆ .   (7.13) 

If N is the number of ordered orbits, participating in given process, we arrive at 

  1========
∑∑∑∑
∑∑∑∑∑∑∑∑

n
orbne

n
orbn

macroe

n
orbn

kLk h

µµ

∆
     or     e

orbn

orbn

orbn

orbn

n
orbn

n
orbn

k
N
N

============
∑∑∑∑
∑∑∑∑

hhh

µµ
µ

. (7.14) 

Hence, we have      e
orbn

orbn k====
h

µ
.      (7.5) 

 Thus, the “orbital magnetic moment” is, in essence, the other expression of the orbital moment of 
momentum, which is one of the measures of the orbital motion. 

 

 
 

8. An electron in the space of a conductor 
 

In a general case, an electron in the space of a conductor circumscribes an elementary amplitude 
wave-beam of the electron current I. This wave-beam represents the superposition of two transversal 
x- and y-beams of currents: 
    )( αωω ++++−−−−⋅⋅⋅⋅==== zkti

x
zeeI , )( αωω ++++−−−−⋅⋅⋅⋅==== zkti

y
zeeiI ,   (8.1) 

where       emIe ====ω       (8.1a) 
is the elementary quantum-amplitude of the electron current, kz is the wave number, z is the 
displacement along the axis of a conductor and α is the initial phase. In the interatomic space of a 
conductor (the space of basis), the wave number is defined as 
       ckz /ω==== .      (8.2) 
If the axial speed of the wave motion is equal to zero, then 0====zk . 

The equations (8.1) can be also obtained at the consideration of the transversal plane x- and y-
waves-beams of the “electric” charge: 
    )( αω ++++−−−−⋅⋅⋅⋅==== zkti

x
zeeQ , )( αω ++++−−−−⋅⋅⋅⋅==== zkti

y
zeieQ ,   (8.3) 

where e is the amplitude of the electron’s charge (Fig. 8.1a). 
The plane waves-beams, Qx and Qy, are related with the electron’s wave motion, which is 

presented by the superposition of two transversal potential-kinetic x- and y-waves-beams, shifted in 
phase by quarter of a period: 
    )( δω ++++−−−−==== zkti

x
zreΨ ,  )( δω ++++−−−−==== zkti

y
zireΨ ,    (8.4) 

where δ is the initial phase of the wave of potential-kinetic displacements. 
The waves-beams xΨ , yΨ , xQ , and yQ  define the transversal plane waves-beams of current I: 

   )( αωω ++++−−−−⋅⋅⋅⋅======== zktix
x

zeei
dt

dQI , )( αωω ++++−−−−⋅⋅⋅⋅======== zktiy
y

zeiei
dt

dQ
I ,  (8.5) 

or   )( 2
παωω ++++++++−−−−⋅⋅⋅⋅======== zktix

x
zee

dt
dQ

I , )( παωω ++++++++−−−−⋅⋅⋅⋅======== zktiy
y

zee
dt

dQ
I . (8.6) 
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Fig. 8.1. The electron charge waves-beams, Qx and Qy, and the H-atom of mass mH in the cylindrical 

space of a conductor; υ is the azimuth velocity of electron’s motion; λz is the axial 
wavelength; υz is the axial velocity of the electron along the z-axis of a conductor; Be is the 
wave front (a). A graph of the longitudinal-transversal current-beam: Ix and Iy are the 
transversal wave beams-currents, Iz is the axial current, and I is the amplitude spiral wave-
beam of current (b). 

 
The plane-polarized waves-beams of current form the amplitude electron wave-beam (Fig. 8.1b). 

The waves-beams Ix and Iy describe the transversal current, which represents by itself the amplitude 
spiral wave-beam of electron current. The transversal current is inseparable of the axial current Iz (Fig. 
8.1b). 

The average current (axial, transversal) is defined by the integral 

    
e

i

T
e

T
eeeedI

i
I 2421ˆ

2
2 2

2

====================
−−−−∫∫∫∫ ω

π
ω

π
ϕ

π
π

ϕ
π

.   (8.7) 

The cylindrical field-space of the longitudinal-transversal wave beam-current is the field of its 
transversal component, which at the macrolevel is known under the name the “magnetic” field. This 
is the transversal current. The longitudinal (axial) component of the current is called the “electric” 
current. 

In a case, when zυυ ==== , the angle of a spiral trajectory of the current-beam is equal to o45====ϕ . 
And the elementary average current of the wave-beam will be presented by the expression 

      
υλ
υν ee

T
e

T
eI
e

4442 ================ ,    (8.8) 

where rTe πυλυ 42 ========  is the azimuth wavelength of the fundamental tone. The electron current 
induces, in the ambient space, the basis waves of the same frequency λν /c==== , where λ is the 
wavelength in the space of basis. Therefore, the formula of current (8.8) can be also presented as 
      λν /44 eceI ======== .      (8.8a) 

The limiting quantum of the amplitude of current is equal to the fundamental measure 
      meeI ee /2

max ======== ω ,     (8.9) 
where m is the electron mass. From here, we obtain the limiting value of the quantum of average 
current, taking into account the objective measure of the ampere, 210 /10062736593.11 sgA ⋅⋅⋅⋅==== : 

  Asg
m
eeI e 190650366.0/10026111200.222 29

2

max ====⋅⋅⋅⋅============
π

ω
π

.   (8.9a) 

The total cylindrical field, formed by all elementary electron fields Be, is presented around a 
conductor by the cylindrical “magnetic” field. 

During the half-period Te, an electron accomplishes one revolution in the plane of the wave front, 
forming the transversal half-wave. Simultaneously, it passes half of the axial wave. Therefore, the 
transversal and longitudinal (axial) currents turn out to be equal. 

At the complete ordering of orbits of atomic H-units of average mass mu (a.m.u.), the specific 
orbital magnetic moment σ, i.e., the magnetic moment of the unit mass, will be defined by the ratio 
       uorb m/µσ ==== .     (8.10) 
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If 0
0

0 er
c

υµ ====  is the magnetic moment of the Bohr first orbit, the relative specific moment of the 

atomic H-unit, expressed in the units µ0, takes the form: 

      
0000 υ

υ
µ

µ
µ

σ
r
rm

n orbu
theor ============ .    (8.10a) 

This relation concerns the total ordering of orbits. Therefore, the measure ntheor is the specific 
moment of magnetic saturation. Under the condition 00υυ rr ==== , the specific moment is equal to 
ntheor =1 (Table. 8.1). 

 

Table. 8.1. The specific atomic moments of saturation of binary alloys of iron. 
 

Addition     Atomic  %     n*     2/nntheor ====   
 

Al  7.1 2.05 1.025 
  19.7 1.74 0.87 
Au  6.2 2.08 1.04 
  10.5 2.02 1.01    
Si  8.3 2.00 1.00  
  15.9 1.67 0.835  
V  5.9 2.09 1.045       
  10.6 1.91 0.955 
Co  20 2.42 1.21 
  80 1.95 0.975 
Pd  5.5 2.19 1.095  
  40 1.89 0.945 
   ----  ---- 
              2====n      1====theorn     

 

In contemporary physics, the magnetic orbital moment µ0 is presented by the subjective measure 

of the Bohr magneton orbB µµ
2
1==== , which does not have an analogue in nature. Therefore, the specific 

atomic moment is presented by the erroneous measure n, twice exceeding the objective theoretical 
measure ntheor: 

      
00

22
υ
υ

µ
µ

r
rnn

B

orb
theor ============ .    (8.11) 

 
 
 

9. The symmetrical formula of current and the Lorentz transversal interaction 
 

On the basis of Ampère’s transversal interaction,  

      l
c
IBlBF ∆Γ∆∆ ======== ,     (9.1) 

and using the symmetrical formula of current, we arrive at the elementary quantum of the Lorentz 
interaction, which is a variable quantity:   

    eB
c

B
N
Ne

c
l

cN
SneB

N
FFL

υυυ ================
2
2

2
2

2
∆∆

,   (9.2) 

where 2N is the total number of electrons in an element ∆l of a conductor (Fig. 9.1). 

Thus, we have     BgeB
c

F hL ========
υ

,     (9.3) 

where       e
c

gh
υ====       (9.4) 

                                                           
* American Institute of Physics Handbook, Ed. by D.E. Gray, N.Y., McGraw-Hill, 1963, p. 5-172. 
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Fig. 9.1. An element ∆l of a conductor: N is the number of elementary particles, participating in the 

formation of current I and localized in its symmetrical parts; S is the central cross-section, 
dividing the conductor into two symmetrical parts; and B is the magnetic field vector. 

 

 
is the quantum-charge of the transversal magnetic field. Owing to the transversal magnetic charge, the 
formula of interaction in the magnetic field (9.3) turns out the similar to the formula of interaction in 
the central (longitudinal) electric field. 
 
 
10. The symmetrical formula of current and electrolyze 

 
In conclusion, let us consider (at the elementary level) the process of precipitation of atoms on a 

cathode under the action of a current (Fig. 10.1).   
If we deal with the equilibrium process, then, on average, each half-circuit in Fig. 9.1 corresponds 

to the half-period KT2
1  of an elementary cycle Tk. The mass of a precipitated substance M is defined 

through the average value of current I as 

      tI
ne

Am
Q

ne
Am

M uu ∆======== .     (10.1) 

 
 

Fig. 10.1. An elementary circuit with two unclosed half-circuits, related with the points of anode A 
and cathode K. 

 

In a case of the elementary act of precipitation of Nk natrium atoms, Na, on the cathode, the 
average quantum of current is equal to the ratio of the charge KVK eNnQ ====  ( 1====Vn  is the valency of 
Na), flowing in the outer circuit, to the half-period KT2

1 : 

       
K

KV

K

K

T
eNn

T
Q

I
2

2
1

======== .     (10.2) 

The time of precipitation of Nk atoms of natrium on the cathode corresponds to half-period. As a 
result, we have 

    uKK
K

KV

V

u

V

u AmNT
T
eNn

en
Am

tI
en

Am
M ====⋅⋅⋅⋅========

2
12

∆ .   (10.3) 

If TK NTt
2
1====∆ , where NT is the number of half-periods KT2

1  in the time interval ∆t, we obtain 

    uuTKTK
KV

V

u NAmAmNNNT
T
eNn

en
Am

M ========⋅⋅⋅⋅====
2
12

,   (10.4) 

where TK NNN ====  is the number of precipitated Na-atoms. 
At the level of an elementary quantum of precipitation, the equality 1======== TK NN  is valid. In this 

case, we have uAmM ==== . If one uses the classical formula of current 
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       kTeI /====       (10.5)  
(which does not correspond to the real process), during the time quantum of precipitation of atoms on 
the cathode KTt 2

1====∆ , the precipitated mass will be equal  to  uAm2
1 . This value is the physical 

absurdity.  In such a situation, one should be invented the lost “spin of mass” of uAm2
1 in order to 

obtain the whole mass for one Na-atom (repeating the sad history of introduction of the electron spin). 
Of course, the equations obtained approximately describe the process of precipitation of atoms on a 
cathode, which actually has the wave character (this circumstance was not taken here into account). In 
spite of this, the above consideration confirms conclusions presented in this section. 
 
 
11. Conclusion 
 

Let us enumerate the principal theoretical (in the framework of dialectical physics) parameters of 
the electron. 

1. The electron mass has the associated character, its formula is  

   22
0

3

1
4

ee

e
e rk

rm
++++

====
επ

;  at  1<<<<<<<<eerk , 0
34 επ ee rm ==== , 

where 3
0 1 −−−−⋅⋅⋅⋅==== cmgε  is the unit mass density. 

2. The radius of the electron sphere (following from the above formula) is 

    cmmr ee
103

0 10169587953.44/ −−−−⋅⋅⋅⋅======== πε . 

3. In the cylindrical field, the speed-strength is defined by the expression 
kr
aωυ ==== . The 

correlation between speeds and radii of two shells of the same field-space, originated from this 
expression, defines the speed-strength at the surface of the electron sphere: 

    18
00 10793635223.7/ −−−−⋅⋅⋅⋅⋅⋅⋅⋅======== scmrr ee υυ , 

where cmr 9
0 1029177249.5 −−−−⋅⋅⋅⋅====  and 18

0 10187691415.2 −−−−⋅⋅⋅⋅⋅⋅⋅⋅==== scmυ  are the Bohr radius and speed. 
4. The electron charge is  

  19
0

2 1070269248.14 −−−−−−−− ⋅⋅⋅⋅⋅⋅⋅⋅============ sgrme eeee ευπω   or    Ce 191060217733.1 −−−−⋅⋅⋅⋅==== .  

Hence, the fundamental frequency of exchange of the “electrostatic” field and the wave radius, 
corresponding to this frequency, are equal to 
     11810869161968.1/ −−−−⋅⋅⋅⋅======== sme eeω , 

     cmc ee
810603886999.1/ −−−−⋅⋅⋅⋅======== ωD . 

The fundamental wave diameter nmD e 32.02 ======== D  defines the mean interatomic distance in the 
ordered spaces of matter-space-time (crystals). 

The fundamental frequency of the wave “electrostatic” field eω  (quantum mechanics deals just 
with these waves, unknowing about it, under the name the waves of “probability”) defines also the 
quantum of the specific resistance of space of the subatomic level 

     cmee ⋅Ω⋅== −6
0 10042328513.6/1 ωερω , 

which is equal to the mean specific resistance of elements of the periodic table at 273 K; etc. 
5. The orbital magnetic moment of electron is 

 120
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0 10575105736.6 −−−−−−−− ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅============ scmg
mc
eer

ce h
υ

µ  or 12310854803085.1 −−−−−−−− ⋅⋅⋅⋅⋅⋅⋅⋅==== TJeµ . 

6. A ratio of the orbital magnetic moment to the moment of momentum of the electron 
corresponds to Einstein’s-de Haas’s experiment: 
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. 

This magnitude, in accordance with the objective theory of electromagnetic processes, is equal to the 
wave number of the fundamental frequency. 

The possible limiting values of electron’s proper magnetic moment and spin are not so difficult to 
calculate relying on the parameters µe and ħ. The maximal proper (spin) electron magnetic moment 
can be estimated by the formula 
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Taking into account that (((( )))) 00
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The following proper moment of momentum (spin) of the electron, at most, could be: 
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where 002/ rmh υπ ========h  is the electron’s orbital moment of momentum and h is the electron’s orbital 
action called the Planck constant. (The electron’s orbital action quite often is attributed also to those 
particles, whose motion has no relation to the electron, and then, on such speculative principles, new 
concepts are developed). 

Again, the same standard relation (as for the orbital motion-rest), in this case for the electron’s 
proper motion-rest, takes place between the possible magnetic moment (11.2) and the moment of 
momentum (11.3): 
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These results provide justification to assume that the electron spin of the value 2/h  is the 
theoretical myth. All relativistic equations, including Schrödinger’s equation, were built on the basis 
of negation of contains and causes. The description of nature was made on the basis of forms and 
effects, which only were recognized as the “scientific reality”. Following the fully developed 
approach, the researcher must deal with sensations and their interpretation is the matter of creative 
fantasy of the free game of notions. Accordingly, a physical theory must not answer the question 
“why”, but must answer only the question “how”. In such situation, a talent of the mathematical 
matching of calculations to the experiment is especially appreciated. By this way, the great successes 
were obtained, but an understanding of the nature of phenomena was not achieved. The mathematical 
constructions, farther and father from reality, astonishingly complicated its understanding and are, in 
essence, physically senseless. 

Thus, however hard we may try to approach from different points, we arrive at the conclusion that 
the initial conceptions of the Dirac equation are false. Therefore, this equation cannot give us the 
objective picture of atomic processes. Concerning different concepts of quantum mechanics, they 
continue the traditions of the thirtieths. Contemporary physics and chemistry still continue to set forth 
doctrines on the basis of completely exhausted themselves ideas. The further development of the 
aforementioned concepts proceeds via the complication of mathematical constructions, where already 
no physical sense can be found; and their logic is in the highest degree confused and speculative.  


