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General Introduction 

We have finished consideration of the Dynamic Model (DM) of elementary particles 

characterized by its pioneer discoveries, which uncovered the origin of mass and the nature 

of charges. The latter led (as in the domino effect) to a series of the subsequent resultant 

discoveries. Among them it should be noted, first of all, the discovery of fundamental 

frequencies of subatomic, atomic and gravitational levels, e and g, which were made as a 

direct consequence of the aforementioned pioneer discoveries 

In this series of Lectures, we turn to the description of the next key problem resolved in 

the framework of dialectical physics thanks to the Wave Model  to the problem of atoms. 

What atoms represent by themselves as physical formations and how they are formed? We 

focus our attention on elucidating the wave structure of atoms and molecules, which are 

material formations consisting of elementary atoms, the hydrogen atoms, to which we refer 

protons, neutrons and, directly, atoms of hydrogen. 

It is not surprising that the modern atomic model raises for a long time the well-grounded 

doubts [1-3]. With all the responsibility we can be argued that the problem on the atom 

structure is unsolved in physics and, generally, is unsolvable presently in principle due to the 

weakness of mainstream theories. Apparently, everyone from the readers-physicists already 

understood the main reasons conditioning an appearance of such theories that led to the 

disadvantageous current state in physics noted by many. The matter is that the modern 

concept on atomic structure is based on the abstract-mathematical quantum-mechanical 

model (theory) of atoms, which inadequately reflects reality since it was/is developed in the 

framework of the dubious Standard Model (SM) dominating, unfortunately, still in physics 

[4]. 

In particular, the concept of the SM on the quark structure of constituents of atoms, 

nucleons, as is believed, is contrived. An existence of quarks is not confirmed directly by any 

experiment. Further, the size of nucleons, accepted to be comparable to the electron size, i.e., 

of the order cm1310  in magnitude, is at variance with common sense. Really, the mass of 

the proton is by more than three orders of magnitude greater than the electron mass, 

ep mm 15267245.1836 . Mass is the amount of matter an object contains, while volume is 

how much space it takes. And mass and volume are related by the simple relation, Vm  . 

Hence, at such a relativity small size, the density  of nucleons must be much greater than the 
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density of electrons. As a result the unbelievably large magnitude of the order 31410 cmg  

has been ascribed to their density. We have grounds to assert that the size of nucleons and 

electrons, one of the fundamental parameters of elementary particles, of the aforementioned 

order in magnitude accepted in the SM, is inadequate to reality. According to the DM, the 

size of the proton cmrp

810528421703.0   (L. 2, Vol. 2, Eq. (27)). Moreover, the 

comprehensive analysis shows that a single-site (monocentric) model of atoms is also 

questionable; see, for example, an analysis conducted in [5]; and etc. Accordingly, the 

structure of atoms and, hence, the specific spatial disposition of nucleons inside each of 

them, is unknown hitherto.  

A lack of true knowledge about the structure of elementary particles and, hence, of atoms 

and molecules, has influenced on other branches of physics and, naturally, first of all on 

chemistry. Chemistry is chiefly concerned with atoms and molecules and their interactions 

and transformations. The modern theoretical models on the structure of individual molecules 

are based (in the framework of quantum chemistry) on quantum mechanical (QM) nuclear 

atomic model and on the key role that plays the so-called electron configuration of atoms in 

the formation of molecular structures.  

This is taken for granted in the WM theory based on the wave concepts on the structure of 

matter, the spatial structure of molecules (the strictly ordered disposition of atoms in them) is 

encoded in the spatial disposition of atomic constituents of the molecules. Namely, the 

geometry of the disposition of interatomic bonds in space of molecules is defined by 

coordinates of a spatial position of neighboring nucleons in individual bonding atoms, but not 

due to the mystic “electron configuration”. According to the WM, electrons define only the 

strength of chemical bonds [6], but not their directions as it is commonly believed. 

Actually, in the last years, it was convincingly shown [7-9] that the simplest particular 

solutions of the ordinary wave equation, 
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contain information about the internal (spatial) nucleon structure of individual atoms and 

symmetry of crystals. These solutions reveal the structure of isotopes and the nature of 

Mendeleev’s periodic law. An ordered equilibrium disposition of nucleons inside of 

individual atoms predetermines the disposition of “atomic nodes” in molecules and crystals. 

In the light of this discovery, elementary material microformations commonly called atoms 

are, in essence, the nucleon molecules. ̂ -Function represents in this case the density of 

potential-kinetic phase probability of occurrence of events in wave spaces [9] (we will talk 

about it in the second Lecture).  
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Since then as the aforesaid results were obtained, the internal structure of atoms and its 

reproducibility at the molecular level (in the short-range and long-range orders) got the first 

direct evidences.  

The aforementioned revelations have become appeared for the first time immediately as a 

result of comparative analysis of the solutions of two equations: the ordinary (“classical”) 

wave equation (1) and Schrödinger’s wave equation [1-3]. This analysis has disclosed the 

conceptual flaws inherent in quantum mechanics and stimulated the search of an alternative 

theory to replace the inadequate QM. This search led to the WM that is the subject of 

consideration in these Lectures.  

Developing the Wave (shell-nodal) Atomic Model (further shortly, the WM), we are based 

on an axiom about the wave nature of all objects and physical phenomena in the Universe 

and, hence, on the Dynamic Model of elementary particles [10], using its concepts and the 

resulting fundamental parameters unknown earlier, i.e., inherent exceptionally in the DM. 

Remember, according to the DM, elementary particles are pulsating microobjects. 

Interactions between them and with an ambient space, or more correctly, exchange of matter-

space and rest-motion (matter-space-time for brevity), are realized at the definite fundamental 

frequency e characteristic for microobjects at the atomic and subatomic levels.  

Waves of exchange form standing waves in bound domains of space. The nodal structure 

of the standing waves, as it turned out, defines the nucleonic structure of atoms. Potential 

nodes of the waves are natural places for the equilibrium disposition of the particles – 

constituents of atoms and molecules. 

An obtainment of the unique results concerning the shell-nodal structure of atoms became 

possible also due to clarification of the nature of the imaginary number i in complex numbers 

[11 - 13] and, hence, thanks to emergence of a clear understanding of physical meaning of 

imaginary components in complex wave functions, which describe physical objects and 

phenomena.  

The principal stages and all details related to particular solutions of the wave equation, 

which led to uncovering the wave (shell-nodal) structure of atoms, and considered in this set 

of Lectures, one can find in the indicated above References, to which we can add yet the 

following two reference papers published as selected Chapters in the books [14, 15]. 
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Lecture 1 

 

The Wave Equation 
 

 

1. Introduction 

At the beginning, in this Lecture, we present the very basics of mathematics concerning 

the general wave equation,  
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tczyx
.     (1) 

As has been mentioned in General Introduction, particular solutions of this equation in 

the spherical space have promoted revealing the quasi-spherical shell-nodal structure of 

atoms. Therefore, an initial subject of the consideration on this issue is the familiarization 

with the origin of four main constituents-equations, to which the three-dimensional wave 

equation (1) comes to in the spherical system of coordinates. We mean the radial, polar, 

azimuthal, and time equations presented in the mathematical form well-known long ago in 

physics. Each of these four equations correspond to one of the four independent variables: 

tr and,,,  .  

 

2. Rectangular space 

According to the definition, the potential-kinetic gradient A


 of the scalar field ̂  (of the 

field exchange potential) is defined by the expression, 

.ˆˆˆ 
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
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
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
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egradA zyx
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    (2) 

The qualitative operator vector, 


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

















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e
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x
e zyx


,      (3) 

defines the actions that needs to perform on the scalar ̂ ; it is called in mathematics the del 

operator or the operator nabla (or  -operator).  
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The gradient A


 defines the direction of the biggest spatial change of the potential ̂  of 

the scalar field of exchange. 

The divergence or the flux density of the vector A


 of the field of exchange is represented 

by the expression, 

A
z

A

y

A

x

A
dSnAlimAdiv zyx

S
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
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1

0
    (4) 

If the vector A


 is expressed through the potential ̂ , then the divergence takes the form, 

2

2

2

2
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2
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or 
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where 

2
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2
2

zyx 












       (7) 

is the qualitative scalar of operations (a differential operator given by the divergence of the 

gradient of a function on Euclidean space), or the Laplace operator (“Laplacian”).  

The general wave equation,  

0
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

tc
,      (8) 

is the wave equation of exchange. It indicates that the flux density (4) of the vector A


 of the 

field of exchange is proportional to the scalar acceleration of the potential ̂ . 

Let us present the second term of the above equation in the following form, 
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.     (9) 

In this case the wave equation (8) takes the form, 
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or 
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where 
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k .     (12) 

For the sake of simplicity, the subscript k will be quite often omitted, and then the wave 

equation will have the form: 

0
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 .       (13) 

 

3. Curvilinear orthogonal space 

Obviously, the formula (2) of the gradient A


 of the scalar potential ̂  for the 

rectangular reference space is also valid for a local volume of the reference curvilinear space. 

As regards of divergence, the formula in the curvilinear reference space takes a somewhat 

different form. 

A flux of the vector A


 through the opposite facets, 1 and 2, (see Fig. 1) is equal to: 
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The fluxes through the facets, 3 and 4, and 5 and 6, are defined analogously: 
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Fig. 1. An elementary volume of field-space with the reference orthogonal curvilinear space: 

321 ,, eee


 are local unit vectors; 111 ,, dzdydx are elementary volume edges; 111 dzdydxd   is 

an elementary volume. 
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On the basis of (14) – (16), we obtain: 
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4. Spherical orthogonal space 

Let us consider the spherical wave field of exchange. Its coordinates are related with the 

reference rectilinear space by the following way (Fig. 2): 

 cossinrx    sry sinsin    cosrz     (19) 

 

 

Fig. 2. The relation of rectilinear and spherical reference spaces. 

 

In an elementary volume  d  (Fig. 3),  -operator takes the form, 
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Fig. 3. An elementary volume of the reference spherical space: 
321 ,, eee
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is the radial constituent of the gradient of the field of exchange. 

Now we will consider the divergence of the vector A
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The fluxes through the facets, 3 and 4, and 5 and 6, are defined analogously: 
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



 d

r

rA
dN

sin

)(
2

2
2         (26) 

drdd
r

rAd
dz

z

dydxA
dz

z

dydxA
dydxAdydxA s 
























)sin()()( 2

1

1

113
1

1

113
113113 .  

or 

     



 d

rr

rA
dN

sin

)sin(
2

2

3
3        (27) 

On the basis of (25) – (27), we have: 































r

rArsArA

r
Adiv r )sin()()sin(

sin

1
2

2


.   (28) 

Taking into account (22), (23), and (24), we arrive at: 


















































































r
r

rr
divgrad

ˆ
sin

ˆ

sin

1ˆ
sin

sin

1ˆˆ 2

2
,  (29) 

or 


















































































)(

ˆ
sin)(

)(

ˆ

sin

1ˆ
sin

sin)(

1ˆ 2

2 kr
kr

krkr
k

,  (30) 

Denoting the function ̂  as ̂  and assuming that 

)(),,(ˆ)()()()(ˆˆ  TkrTkrR ,   (31) 

we have: 




























































 

ˆ1

)(

11

)(

ˆ
sin

sin)(

1ˆ
2

2

222 krkr

ctg

kr
k ,   (32) 




















































 

ˆ1

sin)(

1ˆ

sin

1

sin)(

1ˆ
2

2

222 krkr
k ,    (33) 
























































 ˆ

)(

1

)(

1

)(

2

)(

ˆ
sin)(

)(sin)(

1ˆ
2

2
2

2 kr

R

Rkr

R

Rkrkr
kr

krkr
kr . (34) 

As a result we get 
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





































 ˆ

)(

1

)(

1

)(

21

sin)(

11

)(

11

)(
ˆ

2

2

2

2

222

2

22 kr

R

Rkr

R

Rkrkrkrkr

ctg
k   (35) 

Considering (11), we can write now the following equality, 

2

2

2

2

2

2

2

2

222

2

22

1ˆ

ˆ

1

)(

1

)(

1

)(

2

1

sin)(

11

)(

11

)(












































d

Td

Tkr

R

Rkr

R

Rkr

krkrkr

ctg

  (36) 

Assuming 1
1

2

2


d

Td

T
, we get 

2

2

22

2

2

22

2

)(
)(

)(

)(

1
)(2

1

sin

111
kr

kr

R

R

kr

kr

R

R
krctg 






























   (37) 

The further natural mathematical operation is grouping (37) by independent variables 

and equating the obtained groups to a constant value, for example, let us take )1( ll , where 

...,3,2,1,0l : 

)1(
1

sin

111

)(
)(

1
)(2

)(

)(

2

2

22

2

2

2

22









































llctg

kr
kr

R

R
kr

kr

R

R

kr

  (38) 

Thus, we have 

  0)1()(
)(

)(2
)(

)( 2

2

2
2 









Rllkr

kr

R
kr

kr

R
kr .   (39) 

Dividing the next variables (  and ) by the same way, we can write the following 

equality: 

2

2

2
2

2

2 1
sin)1(

11
mllctg 





























    (40) 

Hence, we have arrived at the following equation: 

0
sin

)1(
2

2

2

2




















 m
llctg      (41) 
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Eventually, the wave equation 0
ˆ

ˆ
2

2





k

 decomposes (for the case of the spherical 

orthogonal space) into 

a) the time equation, 

      T
d

Td


2

2

,        (42) 

and three equations of space: 

b) the radial equation, 

  0)1()(
)(

)(2
)(

)( 2

2

2
2  Rllkr

krd

dR
kr

krd

Rd
kr ,    (43) 

c) the polar equation, 

0
sin

)1(
2

2

2

2




















 m
ll

d

d
ctg

d

d
,    (44) 

and 

d) the azimuthal equation, 




 2

2

2

m
d

d
.       (45) 

Elementary linearly independent solutions of the azimuthal equation (45) are 

)()(ˆ  mi

me ,      (45a) 

where m is the constant factor defining from the normalizing condition,  is an initial phase 

of the azimuthal state. 

 

5. Polar equation 

The polar equation (44) is transformed further by introducing a new variable  cos . 

Because 21sin   and  ddd 21sin , therefore,  



















d

d

d

d

d

d

d

d mlmlml ,2,,
1    and  











d

d

d

d
ctg

mlml ,,
.  (46) 

Further, 
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2

,

2

2,,2

2

,

2

)1(1
































 mlmlmlml

d

d

d

d

d

d
   (47) 

And Eq. (44) takes the form, 

0
1

)1(2)1( ,2

2
,

2

,

2

2 



















 ml

mlml m
ll    (48) 

This is the differential equation, solutions of which are Legendre’s associated functions 

mlP ,  of the first kind of the power l and the order m:  

 l
ml

ml

l

m

ml
d

d

l
P 1cos

)(cos!2

sin
)(cos 2

, 









.     (49) 

We present them in the form of Legendre’s reduced functions: 

  l
ml

ml
m

ml
d

d

l

ml
1cos

)(cos
sin

)!2(

)!(~ 2

, 










,    l

ll sin
~

,
.  (49a) 

Wherein, 

mlmlml
l

ml
,12

22

,,1

~

14

~
cos

~
 




 .      (50) 

Legendre’s reduced functions (49a) are related with Legendre’s associated functions mlP ,  

(49) by the following way, 

ml

l

ml P
l

mll
,,

)!2(

)!(!2~ 
 .       (51) 

The first three Legendre’s reduced functions have the form, 

1
~

0,0  ,  



 cos

)(cos

)(cos

2

1~
2

0,1
d

d
,   sin

~
1,1

.  (52) 

On the basis of the recurrent relation (50), it is easily to get the other remaining polar 

functions. 

 

6. Radial equation 

The transformation of the radial equation (43) is realized by using the following 

substitution, 
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kr

Z
R l

l  .        (53) 

Accordingly, 

0
)()(

1

)()(2)(


krd

dZ

krkrkr

Z

krd

dR lll ,    (54) 

2

2

22

2

)()(

1

)()()(

1

)()(4

3

)( krd

Zd

krkrd

dZ

krkrkrkr

Z

krd

Rd llll  ,    (55) 

and 

  0
)(

)1()(
)(

)(2

)()(
)()(

)(
)(

)(4

3

2

2

2





kr

Z
llkr

krd

dZ
kr

kr

Z

krd

Zd
krkr

krd

dZ
kr

kr

Z

ll

llll

,  (56) 

  0
)(

)1()(
)()(

2

)()()()(

1

)(4

3

2

2

22

2

2





kr

Z
llkr

krd

dZ

kr

kr

Z

krd

Zd

krd

dZ

krkr

Z

ll

llll

,   (57) 

  0
)(

)1()(
)(4)()(

1

)( 2

2

22

2


kr

Z
llkr

kr

Z

krd

dZ

krkrd

Zd llll ,    (58) 

0)1(
)(

)
2

1(
1

)()(

1

)( 2

2

2

2


















 l

ll Zll
kr

l

krd

dZ

krkrd

Zd
.     (59) 

The final result (59) of the substitution (53) is the equation of cylindrical functions. Its 

elementary potential-kinetic solution is represented by the Hankel function: 

)()()(
2

1
2

1
2

1 kriNkrJkrHZ
llll 




 .     (60) 

For 1)( kr , 




















)(

42
exp

)(

2
)(

2
1 kr

l
i

kr
krH

l
     (61) 

With taking into account (53) and (60), and the case (61), it is convenient to present the radial 

solution of the equation (43) in the following form, 

kr

kriskrc
A

kr

kreA
krR lll

l

)()()(ˆ
)(ˆ 

 ,     (62) 
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where A is the constant factor, 

)(
2

)(
)(ˆ

2
1 krH

kr
kre

ll






  is the spherical exponent;     (63) 

)(
2

)(
)(

2
1 krJ

kr
krc

ll 


  is the spherical cosine;     (64) 

)(
2

)(
)(

2
1 krN

kr
krs

ll 


  is the spherical sine;      (65) 





















)(

42
cos)(

2

)(
)(

2
1 kr

l
krJ

kr
krc

ll ;      (66) 





















)(

42
sin)(

2

)(
)(

2
1 kr

l
krN

kr
krs

ll .      (67) 

 

7. Conclusion 

Particular grounds of mathematical physics concerning the wave equation (1) (or (8)) and 

the equations of its constituents, (42) – (45), to which the spherical realization of the wave 

equation comes to, have been presented here. All stages of the derivation of two main 

constituent equations, (51) and (62), of the three-dimensional wave equation (8) were shown 

herein in detail.  

The aforementioned two constituent equations are, correspondingly, the equations for 

polar ( ) and radial (r) variables. Their solutions (together with solutions of the equation for 

the azimuthal variable, , (45)) define the coordinates of nodes and antinodes of standing 

waves in the spherical space (that will be discussed further). Knowledge of the given 

derivation is necessary for understanding the characteristic peculiarities related to the origin 

of these equations and to understand, taking also into account the DM concepts on the 

structure of elementary particles, the physical meaning contained in the solutions of (1) that 

led, ultimately, to uncovering the shell-nodal structure of atoms. 

The derivation was realized sequentially by the corresponding transformations of the 

potential-kinetic gradient A


 of the scalar field ̂  of the field exchange potential. Denoting as 

̂ , it has the form (31):  

)(),,(ˆ)()()()(ˆ  TkrTkrR       

where  
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)()()(),,(ˆ  krRkr .     (68) 

The resulting solutions: )(ˆ krRl , )(,  ml , and )(ˆ m , of the equations corresponding to 

each of the entering in (69) functions: have helped to disclose an internal structure of atoms 

and to understand what these atoms represent by themselves as physical objects. Remember, 

we are relying here on an unquestioned concept on the wave nature of their origin, as on the 

wave nature of the origin of all objects in the Universe, in full agreement with fundamentals 

of dialectical physics realized in the WM.  

Information on the structure of matter (in particular, atoms), which was found thanks to 

the WM in pure mathematical particular solutions of the wave equation (8), is uncovered, as 

far as possible, in detail and gradually in the subsequent Lectures of this Volume. 
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Lecture 2 

 

The Wave Equation Solutions 
 

 

1. Introduction 

One of the particular solutions of the general (“classical”) wave equation, 

       0
ˆ1ˆ
2

2

2







tc
,       (1) 

are standing sinusoidal spherical waves described by the product of radial (Bessel), polar 

(Legendre’s), and azimuthal functions [1]. The nodal structure of the standing waves reminds 

spherical resonant cavities having internal oscillating longitudinal (“electric”) and transversal 

(“magnetic”) mode fields [2].  

The comprehensive analysis of the solutions of (1), carried out during the development of 

dialectical physics, led to the discovery of the unknown earlier fact that the nodal structure of 

standing waves in the three dimensional space uniquely determines (repeats) the structure of 

matter at the subatomic, atomic and molecular levels, in particular, the spatial disposition of 

constituents-nucleons inside the atoms. This discovery completely confirmed the basic 

concept of dialectical physics on the wave nature of all objects and phenomena in the 

Universe. Further, in the next Lectures, the nodal structure of the atoms, originating from the 

solutions, will be demonstrated on the examples of the internal spatial structure, mostly, of 

carbon and oxygen atoms and some their compounds, including graphene, to which in recent 

years a special attention is paid.  

In the language of dialectical logic (remember the relevant discussions held in L. 10 of 

Vol. 1),  the wave equation of the form (1) means the equality of time double and spatial 

double negations of ̂ -image of the physical wave field-space, i.e., (1) represents the 

dialectical laws of double spatial and double time negations.  

Following a consistent logic of the description that we held in our Lectures, the time has 

come to give now a clear definition of the wave ̂ -function, entering in the wave equation. 

Namely, we should know, what the physical meaning is contained in the wave ̂ -function. 
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And then, uncovering general forms of the solutions presented in previous Lecture (Eqs. 

(45a), (49), and (62)), we can turn to consideration of the concrete extended expressions for 

these solutions. 

The present Lecture is focused just on these two aforementioned subjects. Let us proceed 

directly to the first of them – to the definition of the wave function. 

 

2. Physical meaning of the wave function 

The wave exchange of matter-space and motion-rest (in short, matter-space-time) is in the 

nature of all physical phenomena. Accordingly the probability of possible states must have as 

well the wave character and reflect the states of rest and motion. The possibility of rest and 

motion gives birth to the potential-kinetic field of reality, where rest (a potential field) and 

motion (a kinetic field) are inseparable linked between themselves in the unit potential-

kinetic field. The mathematical image (measure) of the wave of possibility is the wave of 

probability, which was called in dialectical physics [3] the phase probability and denoted by 

the symbol p̂ : 

        kp ippp ˆ .      (2) 

Potential and kinetic phase probabilities, pp  and 
kp , represent the probability of rest and 

motion, correspondingly. 

The density of phase probability ̂  describes the distribution of phase probability p̂ : 

      kp
kp

i
dV

dp
i

dV

dp

dV

pd


ˆˆ ,     (3) 

where dV is an elementary volume of space, pdˆ  is an elementary phase probability, p  and 

k  are, correspondingly, the potential and kinetic densities of phase probability.   

We assume that the phase probability p̂  (2) and the density ̂  (3) satisfy the wave 

equation (1), which should be called in a general case the wave probabilistic equation. The 

fact is that the phase probability p̂  and its density ̂  must describe any wave events. In 

every concrete case, the character of studying objects and the concrete chosen parameters-

measures of the description are determined by these events. 

The energy of fields is proportional to the wave amplitudes squared; therefore, the density 

of energy of the field is presented as 

 
2222 ,, kkppkk

k
pp

p

dV

dE

dV

dE

dV

dE
 ,  (4) 
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where  dEp, dEk, and dE are differentials of the potential, kinetic, and total energy; p  and 
k  

are some coefficients of proportionality depending on the selection of phase probability and 

on the character of the field. 

For the class of fields satisfying the condition,  kp , we have 

       
2

22 ˆ)(  kp
dV

dE
.     (5) 

Along with the phase probability, we operate with the notion of energetic probability.  

The differential of energetic probability dw, by the definition, should be assumed to be 

proportional to the differential of energy dE, 

        dEdw  ,       (6) 

where  is the coefficient of proportionality. Hence the densities of potential, kinetic, and 

total energetic probabilities are determined as 

    
2

22 ˆ,, 
dV

dw

dV

dw

dV

dw
k

k
p

p
,   (7) 

where   is the coefficient of proportionality depending on the character of the field and 

the choice of the wave function ̂ 

The notion of energetic probability is needed, along with phase probability, due to the 

simple reason: the distributions of total energy and masses are different (although they are 

related between themselves in the wave field-space of exchange). We should distinguish 

them. 

The characteristic elements of the wave probabilistic geometry  extremes and zeroes of 

the functions k and p  define its discrete structure. 

Potential and kinetic extremes are mutually conjugated because the conjugated functions, 

        kp i̂          (8) 

and 

           
kppkkp iii )()()(ˆ  ,    (9) 

satisfy the wave equation. Moreover, these extremes are also “conjugated” to zeroes of the 

wave function because the kinetic extremes spatially coincide with the potential zeroes and 

the potential extremes are spatially imposed upon the kinetic zeroes. 
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The extremes and zeroes of k and p functions coincide with the extremes and zeroes of 

their squares, 2

k  and 
2

p , in three-dimensional space of reality. Therefore, they define the 

same probabilistic geometry of density of states and the energies related to the extremes and 

zeroes. 

Since the wave functions, p̂  and ̂ , satisfy the same wave equation (1), the extremes and 

zeroes of phase probability p̂  and its density ̂  coincide. Hence, in this sense, the functions 

p̂  and ̂  are equivalent. 

The value of the constant coefficient (the normalizing factor) of the ̂ -function does not 

matter because only its extremes and zeros, defining the discrete structure of wave processes 

(their kinematic spatial geometry), interest us. Therefore, it makes sense to introduce the 

notion the potential of probability (or the probability potential) proportional to the wave 

function, which we also designate by the same symbol ̂  At such a definition the potential 

of probability ̂  (just like the density of probability) satisfies the wave probabilistic equation 

(1). 

The potential of probability ̂  in the spherical polar coordinates (with the physical polar 

Z-axis) is represented in the form of the product of the four multiplicative components-

functions of probability: )(ˆ R  (where kr ), )( , )(ˆ  , and )(ˆ tT , which represent by 

themselves the multiplicative components of probability potential.  

The radial, polar and azimuth components of the potential of probability form the spatial 

amplitude of the potential of probability       

      )(ˆ)()(ˆ),,(ˆ  R .     (10) 

Thus, the potential of probability ̂  

     )(ˆ),,(ˆ)(ˆ)(ˆ)()(ˆˆ tTtTR  ,      (11) 

is determined by the product of spatial and time potentials of probability. Their amplitudes 

are described, in accordance with (1), by the following equations: 

       0ˆˆ 2  k ,       (12) 

and 

       T
dt

Td ˆ
ˆ

2

2

2

 .       (13) 
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Eq. (12) is called the Helmholtz equation, where kc , and the wave vector k is the 

constant defined from the boundary conditions. At the atomic and subatomic levels, the k-

vector is determined by the fundamental frequency e inherent in these levels, ck e / . 

After the conventional separation of variables, the wave equation (12) falls into the 

equations of radial )(ˆ lR , polar )( , and azimuthal )(ˆ   components. Solutions and, in 

the definite extent, the form of the radial equation depend on the concrete problem, which 

imposes the different requirements on 2k . However, for any model of an object of study, the 

radial solutions define the characteristic sphere of extremes and zeroes of the radial function. 

For a variety of problems, it is sufficient to know that such characteristic spheres exist. It is 

very important for determination of the spatial geometry of studying object.

 

3. The particular solution of the wave probabilistic equation 

The wave equation (1) admits the particular solutions in the form 

      tiet  )(ˆ),(ˆ rr       (14) 

where )(ˆ r  is the particular solution of the Helmholtz equation (12),  

The wave equatioin (1) describes both the spherical and cylindrical components of 

function-judgment ̂  about the spherical-cylindrical fields of matter-space-time.  

The longitudinal component of the spherical-cylindrical field is described over a 

spherical realization of the wave equation (1). Since )(ˆ)()(ˆ)(ˆ  krRr , the separation 

of variables leads to one time equation (13), which can be presented in the form as follows, 

       T
d

Td ˆ
ˆ

2

2




       (15) 

and three equations of the spherical space: 

    0ˆ))1((
ˆ

2
ˆ

2

2

2

2 





 l

ll Rll
d

Rd

d

Rd
,     (16) 

    0
sin

)1( ,2

2
,

2

,

2





















ml

mlml m
ll

d

d
ctg

d

d
,   (17) 

    0ˆ
ˆ

2

2

2





m

m m
d

d
,        (18) 
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where kr  and t . The time component is usually presented in the form 

       tietT  )(ˆ ,      (19) 

hence 

      


 ˆ
ˆ

2

2

.       (18) 

Using the last equality, the wave equation (1) can be written as 

      












 ˆ
ˆˆˆ

2

2

2

2

2

2

zyx

,     (19) 

where kxx  , kyy  , and kzz  , or in the form, 

      0
ˆ

ˆ
2

2





k

,       (20) 

where 

    
2

2

2

2

2

2
2

zyx

kkkk













 ,     (21) 

and 

     kji
kzkykx

k













 .      (22) 

Hence the differential wave equation (1) can be presented also in the following forms: 

     ˆˆ
kk   or   ˆˆ

k .   (23) 

This equation expresses in the language of philosophy the law of double negation, which 

is the universal law of development (details are in [3]). 

Among numerous solutions of the form (11), there is the solution leading to sinusoidal 

spherical standing waves. Just this solution for the physical wave field-space of spherical 

structure contains information about the atomic structure, periodicity and symmetry [3]. The 

spherical polar coordinates are related to the Cartesian system by the following way: 

   cossinrx ,   sinsinry ,   cosrz .    (24) 

This system is useful if the system has some symmetry about the point of the origin. 

The boundary conditions request that the solutions must be regular at 0  and 

 20 . They must also satisfy the condition ),()2,(  . The wave number 
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ttancons
c

k e 


 ,  r0 . With that, 
e  is the fundamental frequency of the wave field 

of exchange (interaction) at the subatomic and atomic levels; it is equal to  

     11810869162559.1  s
m

e

e

e
.      (25) 

The function (11) and the corresponding spectrum of the kr  values, obtained under 

the condition 0)( krR , form the eigenvalues of the solution. Initial conditions are: 

),,(ˆ)0,,,(ˆ  rr  and ),,(ˆ
)0,,,(ˆ





ri

r
. 

The general form of the solutions of the wave equation (1) for the spherical (longitudinal, 

central) component of ̂ , in spherical polar coordinates, is 

    )(ˆˆ)(ˆ)(ˆ)()(ˆˆ
, tTtTkrR mmll  ,    (26) 

where )(ˆ)()(ˆˆ
,  mmll krR  is the spatial factor of the wave function of physical space; 

...,2,1,0l ; lm  ...,,2,1,0   

The radial component )(ˆ krRl  of the spatial factor describes the density of potential-

kinetic probability of radial displacements, the polar component )(,  ml   the polar 

displacements, and )(ˆ m   the azimuth displacements. 

Under the above conditions, at integer values of the wave number m, an elementary 

solution of the wave equation (12) has the standard form of the product of the solutions for 

three functions corresponding to three spatial variables: )(ˆ krRl  ((62)-(65), L.1), )(,  ml  

((49)-(52), L. 1), and )(ˆ m  ((45a), L.1). If we present the number m in the form sm 2
2

1
 , 

where Ns  (natural numbers), the solution of (12) takes the following form: 

   



 



 is

slll

is

slll eHAeRA )()(
2

)()(ˆˆ
,

2
1,

    (27) 

or  

   ,)())()((
2

ˆ
,

2
1

2
1









 is

sllll eiYJA      (28) 

where Al is the constant factor; kr ; )(
2

1 

l
H , )(

2
1 

l
J  and )(

2
1 

l
Y  (or )(

2
1 

l
N ) are the 

Hankel, Bessel and Neumann functions, correspondingly.  
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Two terms in (28) are the potential and kinetic spatial constituents of ̂  function; they 

have the following form 

    












 is

sll

l

p eJA
Ac

)()(
2

)(
ˆ

,
2

1
,    (29) 

    












 is

sll

l

k eYA
As

)()(
2

)(
ˆ

,
2

1
.    (30) 

The noninteger (fractional) solutions of (12), at sml
2

1
 , where Ns , have the form 

     


 2)()(ˆˆ
s

i

ss eRA ,      (31) 

where 

     )(
2

)(ˆ
2

1

2





 

sHRs
,       (32) 

    )
2

sin
2

(cossin)( 22 
 s

i
s

Ce

s

s

s
i

s
.    (33) 

The maximal value of (33) is at 
2


 . Therefore, the polar extremes of noninteger solutions 

are in the equatorial plane xoy ( 0z , Fig. 2, L.1). 

All spatial components are determined with the accuracy of a constant factor A, imposed 

by boundary conditions, which have no influence on the peculiarity of distribution of the 

nodes on radial spheres. The superposition of even and odd solutions defines the even-odd 

solutions. Odd solutions describe the nodes (remember, of sinusoidal spherical standing 

waves), lying in the equatorial plane of atomic space. In this plane, there are also solutions in 

the form of rings in space (graphically shown further) separated by the radial unstable shells. 

A similar structure is widespread in the Universe. For example, big planets of the solar 

system have rings of matter on such shells. 

It follows from Eq. (33) that the polar extrema of noninteger solutions lie in the equatorial 

plane. For 1s  only one-half of the azimuthal wave is placed on the equator of an external 

shell. It defines one extremum and the z-axis of the first-fold symmetry. If 2s  the function 

in (31) defines two extrema and the second-fold axial symmetry;  3s  results in three 

extrema and the third-fold symmetry, etc. 

The half-integer solution at 1s  describe the azimuthal wave of probability in the 

equatorial plane, which twice rotates around the equator. During a half-period the signs of the 
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parameters are changed into the opposite sign in such a travelling wave. Upon rotating twice 

around the equator, the probability wave repeats itself again and hence we can write 

     ))4(
2

,()
2

,( 
s

Y
s

Y ,      (34) 

where ....,3,2,1s  The common requirement of periodicity, namely that 

)2,(),(  YY , meaning that one complete wave of probability is placed on the 

equator, does not agree with the aforementioned solutions. 

Following the definition accepted in the Wave Model, the complex wave function ̂  (28) 

has the probabilistic sense. Two conjugated real terms, 
p̂  and k̂ , of the wave function 

(28) or (26) represent the densities of potential and kinetic phase probabilities of occurrence 

of events in limited domains of wave physical spaces [3]. We can write the wave function ̂  

in the form 

     
kp itTzyx  ˆˆ)(ˆ),,(ˆˆ ,      (35) 

Both constituents of ̂ , 
p̂  and k̂ , reflect thus the polar opposite features of the function – 

its potential and kinetic character, respectively.  

 

4. Conclusion 

Thus, we have considered the physical meaning of the wave ̂ -function entering in the 

wave equation (1), and now know what we are dealing with (what we obtain as a result) 

solving this equation. The wave function ̂  expresses the density of probability of possible 

states. We also regard the wave function as the potential of probability, as the latter is 

proportional to the density of probability Therefore, the potential of probability ̂ , just like 

the density of probability, satisfies the wave probabilistic equation (1), which for the above 

reasons can be called the wave probabilistic equation.  

The potential and density of probability ̂  relate to any wave events, describing them. In 

every concrete case, the character of studying objects and the concrete chosen parameters-

measures of the description are determined by these events. Another approach to explanation 

of the physical meaning of the wave function is considered in [4] at analyzing Schrödinger’s 

equation of quantum mechanics. 

The boundary and initial conditions needed for obtaining concrete solutions in spherical 

coordinates were formulated wherein. At the accepted conditions, the resulting particular 

solutions of the general (“classical”) wave equation (1), expressed in the form of the product 
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of radial (Bessel), polar (Legendre’s), and azimuthal functions [1], describe standing 

sinusoidal spherical waves. 

The obtained solutions indicate to the binary potential-kinetic character of the wave ̂ -

function, related, in particular, to nodes and antinodes, because it contains the potential and 

kinetic spatial terms. Thus, the wave function reflects the polar opposite features of studying 

phenomena or objects. 

 The data presented in this and previous Lecture will allow us to understand hereinafter 

the unambiguous conclusions that were made as a result of analysing the above solutions, 

which consists in the statement about the discovery of a connection of the spatial disposition 

of nodes (and antinodes) of the spherical sinusoidal standing waves with the structure of 

atoms. This means that the presented solutions of the wave equation describe, in fact, the 

structure of atoms. It is the subject of consideration in the next Lectures. 
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Lecture 3 

 

The Structure of Standing Waves 

in Spherical Space 
 

 

1. Radial functions 

The obtained solution of the spatial component )(ˆ)()(ˆˆ
,  mmllR , of the wave 

function )(ˆ),,(ˆˆ tT  , where ...,2,1,0l ; and lm  ...,,2,1,0  , in the form 

,)())()((
2

ˆ
,

2
1

2
1









 im

mllll eiYJA     (1) 

uniquely shows that it describes the kinematic structure of standing waves in wave physical 

space. Namely, the solution (1) yields the spatial geometry of disposition of the specific 

points (nodes and antinodes) in which the wave ̂ -function takes the zero and extremal 

values. We will show it here, uncovering in detail all components of the obtained solution 

and presenting them in the corresponding graphical forms as far as possible, for clarity. 

Principal polar-azimuth nodes in spherical polar coordinates define the discrete geometry 

of the probabilistic potential polar-azimuth radial wave shells for m  0 . They are 

determined by the elementary solutions: 

    )cos()()( ,   mRC mllp ,     (2) 

where mmlCC  ,  is the constant factor.  

The relative radius kr  of the characteristic shells, potential or kinetic (the shells with 

the zero or extremal value of the radial functions )(lR ), is defined by the roots of the Bessel 

functions [1].  

Zero values of the wave spherical field of probability define the radial spherical shells of 

zero probability of radial displacements (oscillations); they are the shells of stationary states - 

nodes. They are defined by the zeros of the Bessel functions. 
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The radial functions of even solutions ( lm  ...,,2,1,0 ) in (1), defining the 

characteristic potential and kinetic shells, are presented in Table 1 (through their relative 

values 
A

Rl )(ˆ 
) and in Fig. 1. 

 

Table 1.  The potential-kinetic radial functions of the even solutions 
 

l  ))()((2//)(ˆ
2

1
2

1 
 lll iYJAR  

0  
1))cos((sin  i  

1  
111 ))sincos()cossin((   i  

2  
11212 )]sin3cos)31(()cos3sin)13[((   i  

3  
1213213 )]sin)151(cos)615(()cos)151(sin)615[((   i  

4  
13142

3142

)]sin)10510(cos)105451((

)cos)10510(sin)105451[((









i
 

5  
124135

24135

)]sin)1105945(cos)15420945((
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Fig. 1.  Plots of the first six radial spherical functions, potential and kinetic. 
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Two-dimensional images of some potential components of the redial functions, presented 

in Fig. 1, are shown in Fig. 2. 

  

 

Fig. 2. Two-dimensional images of radial spherical functions )(
2 2

1 



l

J  for 5,3,1,0l . 

 

We designate the roots of the zeros and extrema of the radial components, potential and 

kinetic (see (29) and (30) in L. 2), by the symbols qz ,  and qz ,
 , respectively, where 

2

1
 l  

is the order of the Bessel functions and q is the number of the zero or extremum. We also call 

the shells, defined by the zeros qz ,  and extrema qz ,
 , the characteristic polar-azimuth shells. 
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Since 


r
kr  , we obtain the following formulas for the radii of the shells (spheres) of 

the zeros and extrema: qq zr ,,     and qq zr ,, 
  . A large set of characteristic shells 

corresponds to each number l of the radial function. 

For fixed l and m, the variable radial number q defines the whole class of the 

geometrically similar shells of the l-th radial function.  

The conjugate kinetic nodes, namely the points of the maxima of motion, are determined 

by the function 

     )sin()()( ,   mRC mllk .    (3) 

 

2. Polar-azimuthal functions 

The polar and azimuth equations, namely ((17) and (18), L. 2), are evidently common 

(universal) for all models of objects in question, if they are described by the wave 

probabilistic Eq. (1). 

Elementary solutions of the polar equation have the form, 

       )(cos)( ,,,  mlmlml PC ,     (4)  

where Cl,m is the coefficient depending on the normalization conditions, and Pl,m(cosθ) are 

Legendre adjoined functions ((49), L. 1):  

      l
ml

ml

l

m

ml
d

d

l
P 1cos

)(cos!2

sin
)(cos 2

, 









.    (5) 

The normalization of the polar and azimuthal components is determined by the conditions: 

    



0

2
1sin)( d   and     





2

0

2
1)( d    (6) 

The normalized constant Cl,m for the polar component (4) is 

      
)!(2

)!)(12(
,

ml

mll
C ml




 .     (7) 

The elementary linearly independent solutions of the azimuthal equation ((18), L. 2) are 

      )()(  mi

me ,      (8) 



http://shpenkov.com/pdf/Vol.5.Shell-NodalAtomicStructure.pdf 

 

 

35 

 

where  is an initial phase of the azimuth state. If the first component in the function (8) is 

potential then the second one is kinetic: 

   )cos()(  mmp ,  )sin()(  mmk
,   (9) 

Following the normalization condition (6), the normalizing factor of the azimuth potential-

kinetic probability in (8) is equal to  

      



2

1
m .       (10) 

Thus, the two elementary polar-azimuth functions, potential and kinetic, assume the 

following form, 

    )cos()(),( ,,,  mCY mlmmlpml ,     (11) 

    )sin()(),( ,,,  mCY mlmmlkml .      (12) 

Both solutions define the potential-kinetic polar-azimuth function, 

    ))(exp()(),( ,,,  miCY mlmmlml .    (13) 

Polar components )(, ml  (4) with the normalizing factor Cl,m (7) are presented in Table 2. 

 

 

Table 2. The polar functions normalized 

 l  m )(,  ml                             l      m      )(,  ml  

0   0 2/2         4        0 16/23 · (35cos4 - 30cos2 + 3) 

1   0 2/6 · cos         ±1 8/103 · sin cos (7cos2 - 3) 

 ±1 2/3 · sin           ±2 8/53 · sin2 (7cos2 - 1) 

2   0 4/10 · (3cos2 - 1)         ±3 8/703 · sin3cos  

 ±1 2/15 · sin cos          ±4 16/353 · sin4  

 ±2 4/15 · sin2   5         0    16/22 · cos (63cos4 - 70cos2 + 15) 

3   0 4/14 · cos (5cos2 - 3)       ±1    16/165 · sin (21cos4 - 18cos2 + 1) 

 ±1 8/42 · sin (5cos2 - 1)       ±2     8/1155 · sin2 cos (3cos2 - 1) 

 ±2 4/105 · sin2 cos          ±3     16/770 · sin3 (9cos2 - 1) 

 ±3 8/70 · sin3           ±4     32/3853 · sin4 cos  
 

            ±5      32/1543 · sin5  
 

 

To calculate the characteristic polar angles of the functions )(,  ml , it is convenient to 

use the reduced polar functions )(
~

,  ml
, which are normalized in the following way: 
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      (14) 

The recurrence relation connects the normalized polar functions to themselves: 

    )(
~

14
)(

~
cos)(

~
,12

22

,,1 



  mlmlml

l

ml
,     (15) 

And we have  1)(
~

0,0  ,   cos)(
~

0,1
,  and   l

ll sin)(
~

,
, if ml  . 

If the normalizing factor of the azimuth functions (9) is assumed to be equal to the 

numerical unit, these functions are also called the reduced functions. 

The reduced polar potential functions for 6l  are presented in Table 3. 

 

Table 3. The reduced polar functions )(
~

,  ml
 

 l  m )(
~

,  ml
                         l    m      )(

~
,  ml

 

0       0  1 

1  0 cos   5   0 cos (cos4 - 10/9 cos2 + 5/21) 

 ±1  sin     ±1 sin (cos4 - 2/3 cos2 + 1/21) 

2 0  cos2 - 1/3   ±2 sin2 cos (cos2 - 1/3)  

 ±1  sin cos   ±3 sin3 (cos2 - 1/9)  

 ±2  sin2    ±4 sin4 cos  

3 0  cos (cos2 - 3/5)  ±5 sin5  

 ±1  sin (cos2 - 1/5)         

 ±2  sin2 cos  6   0        cos6 - 15/11 cos4 +5/11 cos2 - 5/231 

 ±3  sin3    ±1       sin cos(cos4 - 10/11 cos2 + 5/33) 

4 0  cos4 - 6/7 cos2 + 3/35 ±2     sin2(cos4 - 6/11 cos2 + 1/33)  

 ±1  sin cos (cos2 - 3/7)   ±3 sin3 cos(cos2 - 3/11)  

 ±2  sin2 (cos2 - 1/7)   ±4 sin4 (cos2 - 1/11)  

 ±3  sin3cos    ±5 sin5 cos 

 ±4  sin4    ±6 sin6 
 

 

 

The plots of the polar functions )(,  ml  are shown in Fig. 3. They are valid within the 

normalizing factor for the reduced functions )(
~

,  ml
 as well. 

The reduced polar-azimuth potential functions, ),(
~

,  ml , are presented in Table 4. The 

graphs of the polar-azimuth functions ),(,  ml  (or ),(
~

,  ml ) are drawn in Fig. 4 (with 

circumferences, defining the cones of extremal values of polar angles). 
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Table 4. The reduced polar-azimuth potential functions ),(
~

,  ml
 

 

l         m  mY mlml cos)(
~

),(
~

,,
        l      m        mY mlml cos)(

~
),(

~
,,

 

  0   0 1 

  1   0 cos     5        0     cos (cos4 - 10/9 cos2 + 5/21) 

  ±1 sin cosφ         ±1     sin (cos4 - 2/3 cos2 + 1/21) cosφ 

  2   0 cos2 - 1/3         ±2     sin2 cos (cos2 - 1/3) cos2φ 

     ±1 sin cos cosφ        ±3     sin3 (cos2 - 1/9) cos3φ 

       ±2 sin2cos2φ          ±4     sin4 cos cos4φ 

  3   0 cos (cos2 - 3/5)         ±5     sin5 cos5φ 

      ±1 sin (cos2 - 1/5) cosφ 

    ±2 sin2 cos cos2φ                  6      0     cos6 - 15/11 cos4 +5/11 cos2 - 5/231 

   ±3 sin3 cos3φ          ±1     sin cos(cos4 - 10/11 cos2 +5/33) cosφ 

 4   0 cos4 - 6/7 cos2 + 3/35        ±2     sin2(cos4 - 6/11 cos2 + 1/33) cos2φ 

 ±1 sin cos (cos2 - 3/7) cosφ    ±3     sin3 cos(cos2 - 3/11) cos3φ 

 ±2 sin2 (cos2 - 1/7) cos2φ        ±4    sin4 (cos2 - 1/11) cos4φ 

 ±3 sin3cos cos3φ         ±5    sin5 coscos5φ 

 ±4 sin4 cos4φ         ±6    sin6cos6φ 
 

 

 

The polar components )(,  ml  of the spatial density of the probability ̂  define 

characteristic parallels of the extrema (principal and collateral) and the zeroes on radial 

spheres (shells).  

The azimuthal components m() define characteristic meridians of extrema and zeroes. 

Potential and kinetic polar-azimuth probabilities together define the distinctive coordinates 

(points) of the extrema and zeroes on the corresponding radial shells )(lR . 

 

3. The nodal structure of standing waves 

The contour plots of the potential components of the density of probability p  (for 

3,2,1,0l ) are depicted in Fig. 5. The images presented here are the sections of p  in the 

plane 0x  (for 1,0;3,2,1,0  ml ), the sections in the equatorial plane 0z  (for 

2;2  ml  and 3;3  ml ), and in the plane xy ( 0z , for 2;3  ml ). 

The same solutions, showing the disposition of nodes of standing waves in spherical 

space (corresponding to 5,4,3,2,1,0l ), are depicted schematically in Fig. 6. There at the 

top right are shown also the images of polar )(2,5   and polar-azimuth ),(2,5   functions 

corresponding to the solution for 5l  and 2m , and the image of the polar-azimuthal 

function ),(2,5   conditionally together with a fixed spherical surface of the radius r0, 
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within the radial solution )(2,5 rR . These images are shown for better understanding the way 

by which the points, corresponding to the nodes of standing waves (and wave circular 

formations at 0m ) presented in Fig. 6, were arranged in a specific order. 
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Fig. 5. Contour plots of the sections for the potential density of probability p  in the plane 

0x  (for 1,0;3,2,1,0  ml ), in the plane 0z  (for 2;2  ml  and 3;3  ml ), 

and in the plane xy  ( 0z , for 2;3  ml ). 
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Fig. 6. Solutions   CosmRC mllpml )()(),,( ,,  for constant r of the probabilistic 

wave equation 0
ˆ1ˆ
2

2

2







tc
 presented so as to indicate the space distribution of the 

potential extrema-nodes (discrete elements of the shell-nodal structure of atoms). The 

numbers 1, 2, 3, …, 110 are the ordinal numbers of the principal polar-azimuth nodes 

coinciding with the atomic numbers Z of the elements [3]. 
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Thus, with an example for 5l  and 2m , we see how the presented discrete (nodal) 

structure of the three dimensional wave space is obtained from the aforementioned solutions 

for the different wave numbers l and m.  

The plots of the solutions show that there are principal (designated in Fig. 6 by shaded 

points) and collateral (designated by the smaller unnumbered hollow points) extrema, which 

determine, respectively, stable and metastable states of probabilistic events. Principal 

potential polar-azimuth nodes are numbered in Fig. 6 by the ordinal numbers. 

Every principal node with the ordinal number Z bounds to a definite extent all previous 

shells with their nodes. Having the specific spatial structure, every such object is 

distinguished from all of the others by specific unrepeatable properties. The totality of 

discrete units (nodes) of the wave probabilistic field is considered to be an element (“atom”) 

of the field.  

Now should pay attention to the following fact. It is about the principal difference 

(mentioned in Sect. 2 of L. 2) existing between the distributions of the two kinds of extrema: 

(1) the phase probability density ̂  and (2) the energy density of wave fields proportional to 

2

̂ : 
2

22 ˆ)(  kp
dV

dE
 (Eq. (5), L. 2). This difference is demonstrated in Fig. 7. 

 

 

Fig. 7. The distribution of the extrema of probabilistic states ̂ (small black and white 

spheres) and extrema of the total energy proportional to 
2

̂  (large toroidal circumferences) 

for the shell with l = 4, m = 2. 
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Lecture 4 

 

Fundamentals of the Periodic Law 
 

 

1. Introduction 

Hundreds of graphical representations of the Periodic Law through the Periodic Table of 

the Elements have been designed to present time [1-3] since then as the first periodic table of 

Dmitri Mendeleev, illustrating periodic trends which he found in the properties of the then-

known elements, has been widely recognized after its publication in 1869. Mendeleev’s 

Periodic Table was published in its original form last time in 1906 [4]. Subsequently, all 

published tables, including the last modern ones, represent the modified and partially 

distorted reflections, in form and content, of the original. Mendeleev’s Table has undergone 

some principle changes after appearance of relativity theory and resulting rejection of the 

concept of ether in physics. We will not discuss this topic here. The critical analysis focused 

on identifying the principal difference of the initial undistorted Periodic Table of Mendeleev 

compared with the modern versions of the table, one can find in [5].  

In spite of a rich diversity of the representations proposed in last years, the patterns of the 

distorted versions of the Periodic Table have preserved the order established with lapse of 

time (after aforesaid changes of the original) in the arrangement of the elements in its groups 

and periods have providing no convincing additional information for insight into the nature 

of the Periodic Law. 

Actually, all contemporary variants of the Periodic Table of the Elements are organized 

on the basis of their atomic number (number of protons in the nucleus), so-called “electron 

configurations”, and recurring chemical properties. In atomic physics and quantum 

chemistry, the electron configuration is the distribution of electrons of an atom or molecule 

in atomic or molecular “orbitals”. Thus, currently all explanations of the observed 

periodicity in chemical properties of the elements are based on a quantum-mechanical 

concept on the electron configuration of atoms. In view of the introduced notions, the key 

role at the formation of chemical bonds (their directions) in molecular structures is ascribed 

to the electron configuration of the interacting atoms, i.e., to the above “orbitals”. As 

concerns nucleons, there is no even a hint on any their role in this process.  
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However, reasonableness of introduction in physics of such subjective notions as the 

electron configuration, atomic and molecular orbitals (add to them also the notion of 

hybridization of the orbitals) causes the justified doubts in recent years [6].  

What is the basis of the aforesaid theoretical notions related to the atomic structure, 

which are the basis for modern chemistry and, accordingly, used for explanation of the 

periodicity? In short, the commonly accepted understanding of the periodicity rests on the 

concepts lying in the foundations of quantum-mechanical (QM) atomic theory (model). The 

latter has kept the Rutherford-Bohr idea on an existence of a tiny core (nucleus) in the centre 

of an atom. 

Further, in the QM theory which is probabilistic inherently, there are no circular orbits 

like of Bohr with orbiting electrons on them. The Bohr orbits were replaced with the so-

called probability density function, defining the probability of finding any electron of an atom 

in any specific region around the atom's nucleus. The density of probability is represented by 

the so-called “orbitals” which are regions within the atom where electrons have the highest 

probability of being found. Thus, denial in principle in the QM of such a notion as the 

mechanical trajectory, i.e., lack of the notion of orbiting, is a fundamental feature of the QM 

theory. Electron orbitals (“electron configuration” or “electron clouds”) may refer to an 

“atomic orbital”, describing the behaviour of an electron in an atom, or a “molecular 

orbital”, describing the behaviour of an electron in a molecule. 

Since the aforementioned model of atoms (probabilistic and nuclear) has been accepted 

in physics, atomic nuclei began studied separately in a newly developing branch of physics  

nuclear physics. Remember, the father of nuclear physics is rightly considered Ernest 

Rutherford. Accordingly, the spatial distribution of nucleons inside atoms was/is not 

considering as an urgent problem of researches in atomic physics. It does not make sense for 

the accepted atomic model. Really, according to the latter, all nucleons, densely packed in a 

minute spatial volume in the center of an atom, form there an extremely dense core called the 

nucleus. Its size, as believe, is in the range of 1.75 fm ( cm131075.1  ) for hydrogen H1

1
 

(i.e., for a single nucleon, proton) to about 15 fm for the heaviest atoms, such as uranium 

U238

92 . The so-called rms ("root mean square") charge radius ascribed in modern physics to 

the proton is cmr rmsp
13

, 108775.0  . An enormous density of the nucleus of an atom is 

averaging about 314103.2  cmg .  

Having turned with time into a dogma, the nuclear atomic model has never been 

questioned so far. However, fortunately, during the last several years, as was repeatedly 

mentioned in these Lectures, it has been found that the particular solutions of the ordinary 

wave equation, which has been accepted as the basis of the Wave Model (WM): 

       0
ˆ1ˆ
2

2

2







tc
,       (1) 
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where the ̂-function represents the density of the potential-kinetic phase probability for the 

occurrence of events in wave spaces [7, 8], contain information about an internal spatial 

structure (as turned out to be shell-nodal) of individual atoms (and elementary crystals) and, 

hence, about the nature of the periodicity inherent in their behavior.  

From solutions of Eq. (1) it follows that there is no superdense region in the center of an 

atom, and, hence, nucleons are not superdense formations as is believed. The nucleons are 

located in the nodes of the spherical wave shells of an atom, by two per node. As it turned 

out, the positions of nucleon nodes correlate with the equilibrium disposition of the nodes in 

elementary crystals. This correlation is proven by the found fact that the polar-azimuthal 

functions, defining angular spatial coordinates of nodes and antinodes of standing waves in 

spherical space, indicate characteristic directions of atomic planes in crystals, revealing the 

nature of the law of constancy of angles between their facets.  

Really, the comparative analysis has shown that the characteristic angles defined just by 

the polar-azimuthal functions are materialized in characteristic angles observed in different 

crystal forms of minerals (collected in Table 3.1, pages 232-253 in [9], and Table 1 in [10]). 

This means that the correctness of the internal spatial shell-nodal structure of atoms (not the 

electron structure), that has been discovered thanks to the aforesaid solutions, have obtained 

at once, when solving, the first firm evidence. It should be noted that the aforementioned 

reproducibility in crystals of the nodal structure of individual atoms, i.e., at the molecular 

level (for short- and long-range orders), was the first, but not last in a series of the found 

hereinafter other confirmations of the validity of the shell-nodal atomic model.  

Thus, the Wave Model (WM), considering in these Lectures, does not confirm an 

existence of the superdense atomic nucleus. According to the WM, atoms have the internal 

ordered shell-nodal structure with coupled hydrogen atoms in each of the intra-atomic 

nucleon nodes. Nucleons (protons and neutrons) have a size of the same order that has the 

hydrogen atom. Really, the proton radius is cmrp
810528421703.0   (see Eq. (27) in L. 2, 

V. 2). This magnitude is on five order more than that one ascribed to the proton in 

contemporary physics.  

The key role at the formation of molecules and crystals, i.e., chemical bonds of the 

definite directions, belongs to the spatial configuration of the internodal bonds in external 

wave shells of interacting atoms, but not to the mythical electron configuration as it follows 

from the QM. Electrons define only the bonds strength, but not their directions.  

Like the atoms at their level, nucleons, in turn, have their own internal structure 

described by the same wave equation (1). This structure is finer in comparison with the intra-

atomic nodal structure. The nodal nucleons consist of the finer (subatomic) particles 

characteristic for the subatomic level which is the first among the deeper levels of the 

Universe, following the atomic level. 
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The main subject of this Lecture is a continuation of an analysis of the solutions of Eq. (1) 

carried out in the framework of the Wave Model, where atoms are regarded as the wave 

formations. This analysis has led to the discovery of the shell-nodal structure of the atoms 

and to the fact that the spatial disposition of the nodes in them repeats the nodal structure of 

standing waves in the spherical space.  

The present consideration is focused, in particular, on to elucidation of the nature of 

Mendeleev’s Periodic Law in view of the revealed details about the wave structure of the 

atoms. The modern version of the Periodic Law is generalized in the well-known Periodic 

Table widely represented everywhere in different forms. Here, we demonstrate a new version 

of the table called the Periodic Table of the Atoms [11], which is unique as being the first one 

derived pure theoretically. It displays in a visual form the nature of the Periodic Law which, 

thanks to the aforesaid comprehensive analysis, for the first time in physics has been revealed 

in the well-known particular solutions of the wave equation (1).  

Thus, we are facing the discovery from which it follows that the general (“classical”) 

wave equation describes properly, along with other wave phenomena, the wave structure of 

the atoms and, hence, the Periodic Law which reflects specific wave features of their 

behaviour. It should be noted in this connection that the solutions that are analysed here have 

been known for a long time, but no one could guess so far that they contain also information 

about the structure of atoms. Only dialectical approach has allowed revealing this fact [7]. 

 

2. Nodes of standing waves and nucleon nodes of the atoms 

Fig. 6 presented in Lecture 3 is the key graphical image of the obtained solutions. All 

other forms, namely the Generalized Table of the Elements and the Table of Relative Atomic 

Masses of the Elements, are the derivatives of it. We will turn constantly to this figure in the 

present and other Lectures. Therefore, we show the aforesaid image of the obtained solutions 

here again in Fig. 1.  

The obtained distribution of the nodes, presented in Fig. 1, in the standing wave of the 

spherical space, described by the wave equation (1), also defines the distribution of the 

particles of matter, if a material space is considered. They have to be positioned in nodal 

(potential) points of the space, because any particles move toward an equilibrium state.  

It should be noted in this connection that the wave equation for atomic spaces is the equation 

of the microsystems. It does not describe the motion of isolated microobjects, but it describes 

the wave processes at the definite level of space as a whole, determining the space structures 

as unified systems.  

The question arises as to what kinds of particles are localized in nodes of space at the 

atomic level: neutrons, protons, electrons, or all together?  Analyzing the structure of crystals 

at the end of the eighteenth century, R.J. Haüy (1743-1822) [12] came to the conclusion that  
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Fig. 1. Solutions   CosmRC mllpml )()(),,( ,,  for constant r of the probabilistic 

wave equation 0
ˆ1ˆ
2

2

2







tc
 presented so as to indicate the space distribution of the 

potential extrema-nodes (discrete elements of the shell-nodal structure of atoms). The 

numbers 1, 2, 3, …, 110 are the ordinal numbers of the principal polar-azimuth nodes 

coinciding with the atomic numbers Z of the elements. 
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it is necessary to consider atoms as elementary molecules, the internal structure of which 

determines the crystal structure of solids.  

Since the masses of atoms are multiple of the mass of the hydrogen atom mass, it seems 

reasonable, following Haüy’s ideas, to suppose that any atom, like the elementary Haüy 

molecule, is the hydrogen atom molecule. Actually, it was shown by comprehensive analysis 

of the direct and indirect consequences of solutions of the wave equation [7] that the nodes of 

intra-atomic space are filled by hydrogen atoms corresponding to the protons and neutrons. 

Therefore, atoms should be considered as hydrogen atom quasispherical molecules. Thus, 

it is possible to assume that Fig. 1 shows the actual picture of the distribution of nodes in 

Haüy’s elementary molecules. 

Potential principal polar-azimuth nodes of the wave space of atoms are characterized by 

ordinal numbers. These numbers coincide with the ordinal numbers of the elements of the 

Periodic Table. The number of hydrogen atoms localized in one node is equal to or less than 

two.  

Unnumbered collateral nodes are the points in space where the amplitude ̂  of the 

probability density of events (concentration of matter in our case) is less than that at principal 

nodal points. Therefore, the collateral nodes, indicated in Fig. 1 by smaller white circles, are 

partially vacant; these may provide conditions for the interatomic movement of hydrogen 

atoms.  

For example, one of the isotopes of Si28

14
, has four spherical atomic shells, the principal 

nodes of which are completed (i.e., they contain 28 nucleons), but two collateral nodes of the 

outer shell ( 3n , 1m , see Fig. 1) remain vacant. This latter fact apparently determines 

the semiconductor properties of silicon. All polar nodes (corresponding to m = 0) are 

potential-kinetic nodes. They are simultaneously the nodes of rest and motion. Therefore, 

they cannot be the locations of equilibrium states for the particles of matter settled there. 

Integer-fractional shells (Eq. (31), L. 2), which are analogous to mixed fractions in 

number theory, are complexes of the last integer shells and, subsequently, the groups of half-

integer shells. These complexes give a more complete image of the structure of all atoms of 

the Periodic Table though they are not shown here.  

Half-integer solutions occur in the equatorial domain and can have any-fold symmetry. In 

particular, the five-fold symmetry ( 5s ), which is strictly forbidden by the mathematical 

laws of crystallography, was observed in 1984 [13]. Twelve-fold symmetry ( 12s ) has been 

found by S. Mae [14].  These (and other “forbidden”) symmetries have attracted the special 

attention of modern researchers [15].  

As an example, Fig. 2 presents an image (contour plots of sections) of the distribution of 

the density of matter at s = 5, determined by the function: 
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This distribution of the five-fold symmetry has the characteristic arc-rings. 

Thus the function ̂  describes, following an approach developed in dialectical physics by 

the Wave Model (WM), the density of probability of concentration of matter in standing 

potential nodal points of limited domains of the wave physical space of atoms [7], i.e., the 

wave shell-nodal structure of atoms.  

 

 

Fig. 2. The equatorial distribution of the density of matter at the subatomic level (s = 5). The 

symmetry is “strictly forbidden by the mathematical laws of crystallography” [15]. 

From comparison of quasi-periodicity in completing the shells by nodes (the principal 

numbers of polar-azimuthal nodes), observed in Fig. 2, and the periodicity in the position of 

elements in the Periodic Table by groups and rows (the atomic numbers of the elements), it 

has been easy to come to the understanding that an atom, being considered as a wave 

formation, represents a system of spherical shells with discrete points-nodes of wave space 

completed by hydrogen atoms.  

It means that atoms, reminding nucleon molecules, have not a customary nucleus as is 

assumed in case of the standard quantum mechanical (QM) nuclear atomic model.  

Being essentially different from QM and, respectively, Rutherford-Bohr’s model, the new 

molecule-like atomic model, we shall call it shell-nodal atomic model, well agrees with well-

known experiments that we have already considered (including Rutherford’s experiment on 

dispersion of - and -particles in substance [16]). Moreover, it reveals the nature of some 

phenomena misunderstood until now [17-18], including aforementioned “forbidden” 

symmetries [15], and the unique conductivity and mobility of charges in two-dimensional 

crystals of graphene [19-20].  
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The simplest hydrogen atom H1
1  (protium) itself – an elementary brick of the Universe at 

the atomic level (i.e., the basis particle of the atomic level) – has complicated structure as 

well. It is defined by solutions of the same wave equation (1), but consists of the particles of 

the deepest subatomic level of the Universe not considered here.  

The further analysis of obtained solutions shows that the relative mass of atoms is 

defined by the total number of H-atoms located in nodes of shells of a concrete atom: 

     )( vivigi

i

gipk

k

pk ZZZA       (4) 

were k and i are numbers of polar ( 0m ) and azimuth 0m  shells, respectively; Zpk is the 

number of polar nodes of k-th polar shell; Zgi and Zvi are the number of principal and 

collateral azimuth nodes, respectively, of i-th azimuth shell; pk , gi , and vi are numbers of 

multiplicity, i.e., filling the nodes ( 2or1,0 ). 

 

3. Wave shells of some atoms: examples 

Using the above mentioned data, we can now turn to the consideration of the shell 

structure of concrete atoms. At that we do not claim to offer a complete analysis. The 

completed shells, characterized by the numbers l and m, will be designated by the letter Sl,m, 

and the number of nucleons located at the shells will be indicated in brackets. Let us take, for 

example, the atom of phosphorus with the atomic number 15 and the mass number 31, P31
15 . 

Following the images shown in Fig. 1, the shell structure of phosphorus, limited by the 

external uncompleted shell of the class 
2

1,0
S   with the single polar-azimuthal node of the 

ordinal number 15, has the following design: 

)2()8()0()8()8()0()4()0()1(
2

1,01,30,32,21,20,21,10,10,0
31
15 SSSSSSSSSP    (5) 

that is presented in Fig. 3 (by the graphical symbols of Fig. 1). Note that the completed 

external shell )16(2,3S  (at 2,3  ml ) corresponds to the titanium atom, Ti22 . 

 

 

Fig. 3.  A symbolic design of the shell structure of phosphorus; 1, 2, 3, ... are numbers of the 

nodes filled by two hydrogen atoms (nucleons). 
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The structure of two external shells, )2()8(
2

1,01,3 SS  , mainly defines the properties of 

phosphorus. The shell S3,1 has two discrete collateral vacancies. The external shell of 

phosphorus, corresponding to the half-integer azimuth number sm
2

1
  ( 1s ), has one 

discrete node. S1,1 class of shells induces at the external shell one vacant node. Phosphorus 

P31
15 , as follows from the above design, is a highly active atomic structure.  

When phosphorus loses its outer shell that occurs under the deuterium or tritium 

bombardment, it is converted into silicon Si29
14  (of the mass number 29), 

  )8()0()8()8()0()4()0()1( 1,30,32,21,20,21,10,10,0
29
14 SSSSSSSSSi  ,  (6) 

or Si28
14  with the more symmetric structure (Fig. 4) 

  )8()0()8()8()0()4()0()0( 1,30,32,21,20,21,10,10,0
28
14 SSSSSSSSSi  .  (7) 

Silicon is the first element of the periodic table, which has the vacant collateral nucleon 

nodes in the outer shell (see Fig. 1 at l=3, m=1). It provides the motion, in its space, not only 

of particles, which are much less than nucleons, but also of nodal hydrogen-nucleons 

themselves. Quantum theory interprets this phenomenon as the motion of "holes". 

 

 

Fig. 4. A symbolic design of the shell structure of silicon Si29
14  and Si28

14 .  

Other atomic structures with the outer odd shells, including ones formed as a result of 

superposition of odd asymmetric solutions, are constructed in a similar way. 

As has been mentioned above, polar functions of half-integer shells define equatorial 

orbits in nodes of which can be concentrated matter of deeper subatomic levels. As an 

example, two images of the same distribution of density of matter at s = 12, determined by 

the function (2), are presented in Fig. 5. This distribution of the twelve-fold symmetry has the 

characteristic arcs-rings.  
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Polar-azimuth shells of kp i ˆ  are subspaces of atomic space. These subspaces, 

embedded in each other, form the composite multi-dimensional atomic space. 

 

Fig. 5. The equatorial distribution of the density of matter at the subatomic level (s =12). 

 

 

4. The nature of the Periodic Law 

From Fig. 1, it is seen that a definite similarity of the geometry of external shells of 

abstract atoms occurs. Arranging the atoms with the same or a similar structure of outer shells 

one under another, in accord with Fig.1, we arrive at the periodic-non-Periodic Law of 

spherical spaces.  

If we take the symbols of the real elements of the Periodic Table in their capacity as 

symbols of probabilistic objects (atoms) as seen in Fig. 1 (so that their ordinal numbers Z 

coincide with the atomic numbers of real atoms), we arrive at Table 1. We can now speak 

about a subsequent series of probabilistic elements as “atoms” of the discrete-wave field.  

Table 1 reproduces Fig. 1 in the form of the traditional classification of the chemical 

elements in the order of their atomic numbers. Hence, Table 1 can be regarded as the 

Generalized Law of Quasi-Periodicity of Atomic Structures in matter-space-time and 

possibility-reality. We will call it the Periodic Table of the Atoms of Wave Space. In essence, 

we deal now with the unique Periodic Table as being the first and only derived theoretically. 

The first place in Table 1 takes the neutron under the ordinal number 0, designated as 0H, 

corresponding to l = 0 and m = 0. 

Thus a whole series of the solutions of Eq. (1) constitutes in essence, speaking another 

words, Theoretical Periodic Table of the Atoms (Table 1) [11], revealing the correlation of 

the periodicity of chemical properties of the elements (clearly ordered first by Mendeleyev) 

with the periodical quasi-similarity of the nodal structure of external atomic wave shells.  
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Table 1. Theoretical Periodic Table of the Atoms designed on the basis of the particular 

solutions of the wave probabilistic Equation (1), or the quasi-periodicity as a result of quasi-

similarity of the nodal structure of external atomic shells arranged in Fig. 1 and set here at the 

indicated (by arrows) symbols of the atoms. 
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They elucidate, as mentioned before, the nature of symmetries including those “strictly 

forbidden by the mathematical laws of crystallography” [13-15]. Such symmetries attract at 

present the world-wide attention. In particular, the interest stems partially from the fact that 

the so-called Penrose tiling (a set investigated by Roger Penrose in the 1970s) exhibits a five-

fold rotational symmetry impossible in periodic crystals, just as the structure of certain 

"quasi-crystal" substances. 

The analytical image of an element of probability (an abstract atom) with fully completed 

external shells and the ordinal numbers 

    ...,100,84,72,64,60,52,40,32,28,22,14,10,6,2Z    (8) 
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can be presented by the vector of atomic structure of embedded subspaces: 

       n ,...,, 21Z ,       (9) 

where 

    )cos()()( ,,   mRC mlnlln .     (10) 

This vector, as the unrealizable sum of fully completed shells p ((2), L. 3), defined by the 

integer shells (shells of overtones), can also be written as: 





n

k

kn

1

21 ...Z
.       (11) 

The sign   expresses in (11) the unrealizable addition and the symbol  expresses the sum 

of the embedded subspaces. 
 

Atomic structures, whose ordinal numbers take up the intermediate positions in the row 

(8), are represented by fractional (half-integer) external shells. These shells are the shells of 

undertones. 

In the general case, the complete structure of any element (abstract atom) is defined by 

the following two summations: 

 







   s

s

jsssmmlnllZ

s
RCmRC

2
cossin)()cos()()( 2

,,,    (12) 

The first sum in Eq. (12) consists of embedded whole shells; the second summation consists 

of embedded half-integer subshells. Atoms of intermediate spatial forms, which are 

determined by the odd solutions of Eq. 1 (Eq. (31), L. 2) are located between them.  

The sum of the even number of odd solutions defines, in the equatorial plane, the even 

number of nodes. For instance, the two simplest odd solutions at s= 0 with opposite phases, 

    


 2

1

)(ˆ
i

ss eAR    and  










 2

1

)(ˆ
i

ss eAR ,  (13) 

describe two nodes in the equatorial plane. 

If we add to these two solutions one more similar elementary solution, we obtain three 

nodes, which can be located on either one or two shells. When located on one shell, they will 

be disposed at the vertices of an equilateral triangle that can be described as the sum of 

elementary solutions of the following form: 
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The initial phases, 
m  and 

s  in Eq. (12), characterize a mutual azimuth orientation of 

polar-azimuth shells and subshells of the atomic space with respect to the polar Z-axis. They 

are expressed by the vector of initial phases 

      ),...,;,...,( 11 sm  ,      (15) 

or for whole and  half-integer shells, separately, as 

   );,...,( 1  m
,  and  ),...,;( 1 s     (16) 

The polar shells (m = 0) are always the whole ones. They have axes of infinite-fold 

symmetry and, hence, their mutual azimuthal orientation does not matter.  

The mutual azimuthal orientation of polar-azimuthal shells and subshells defines the 

space isomers of atoms. Obviously, the vector of initial phases is the formal argument of the 

isomers. 

As follows from Fig. 1 and Table 1, the wave number l defines the ordinal number of the 

nucleon layer-period and the number of integral shells in the layer. The total number Np of 

principal azimuthal nodes (or elements) in the period is 

       
22lN p  ,       (17) 

i.e., ...,50,32,18,8,2pN . The number of fractional Nf (half-integer) shells in the layer is: 

       )2( 2 llN f  .      (18) 

The total number Np+c of the principal and collateral azimuthal nodes of an integral outer 

shell is determined by the following expression: 

      mmlN cp 2)1(  ,      (19) 

where )1( ml   is the number of extremal circumferences-parallels (see Fig. 4, L. 3) of the 

shell, which define the extrema of the polar function )(,  ml ; 2m is the number of extrema of 

the azimuthal function  mm sin)( , distinguishing on the shell the meridians of 

azimuthal extrema. The intersection of extremal parallels and meridians defines the nodes. As 
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was noted previously, the number of nodes of non-integral shells, located in the equatorial 

plane, (see Eq. (33), L. 2), is equal to s. 

A general discrete structure of atoms can be presented also by the matrix of nodes of 

wave spherical space. The matrix of polar nodes describes a general polar discrete structure 

of atoms 

       ...],...,,,[ 10 ipppP  ,      (20)  

where p0 is the unitary central node determined by the wave numbers l = 0 and m = 0, pi are 

polar nodes of the i-th shell. Analogously, the matrix of azimuthal nodes is introduced as 

       ...]),(...,,,[ 21 ii ksssS  ,     (21) 

where the si are principal azimuthal nodes and the ki are collateral azimuthal nodes of the i 

shell. The matrix (21) describes a general azimuthal discrete structure of atoms. 

The sum of polar and azimuthal matrices determines the discrete structure of an atom as a 

whole: 

        SPSPAz  ,       (22) 

where Az is a matrix of the polar-azimuthal discrete structure of an atom with the ordinal 

number Z . The numerical form of the matrix Az is as follows: 

 

     Az = 


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


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
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
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
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

















......

16)6(12)8(8)6(42

812)4(8)4(42

068)2(42

00442

00022

00001

        (23) 

 

Thus, the first column in the matrix (23) contains the number of polar nodes (situated on 

the Z-axis, see Fig. 1 and Table 1) corresponding to  ...,5,4,3,2,1,0l  and 0m , 

beginning from the only node at 0l . The second column relates to 1m , etc. The 

number of unnumbered collateral nodes is presented in brackets (the first two collateral nodes 

correspond to 3l  and 1m ). 

It is to be noted that the elements, which have collateral nodes in their outer atomic shells 

the, are semiconductors. The bond energy of nucleons in collateral nodes is lower than that in 

principal nodes and, hence, the collateral nodes can be vacant. Semiconductors are 

characterized by both the electron and “hole” conductivity. It is natural to suppose that the 
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latter kind of conductivity is stipulated by the nucleons located in collateral nodes of the 

shells. 

The first three elements in the row with l = 3, 4, 5 and 1m  (silicon, germanium, and 

gadolinium) have collateral nodes in the outer shells (see Table 1). The outer shells of 

zirconium and hafnium (l = 4 and 5, correspondingly, 2m ) have collateral nodes as well. 

However, the spatial structures (geometry of disposition of the nodes and their number) of 

zirconium and hafnium differ from the structure of the outer shells of the aforementioned 

three elements corresponding to 1m .  

The last two shells of 72Hf have six and eight collateral nodes, respectively. The next 

shell, after the shells of hafnium, belongs to the subsequent atoms with Z = 73 - 84, from 

tantalum to polonium. It is formed with six collateral nodes lying in the equatorial domain. 

For this reason, hafnium must be the strongest absorber of neutrons (hydrogen atoms). This is 

verified experimentally. Note that the last element in this series, polonium 84Po, is an 

exceptionally unstable radioactive element that emits -particles. 

The hexagonal cubic structure of the outer shell of zirconium defines the discrete 

structure (“crystal lattice”) of its space. Principal nodes of the outer shell predetermine the 

cubic structure and, together with the collateral nodes, the hexagonal structure of zirconium. 

Experimental data confirms this.  

The structure of hafnium (l = 5, 2m ) is analogous to the zirconium structure (l = 4, 

2m ). Because of the great similarity of their outer shells, both of these elements were 

formed simultaneously during the formation of the Earth’s crust. The outer shell of hafnium 

can be regarded as the exited state of the outer shell of zirconium, which under Earth’s 

cooling served as the stable shell. For this reason, zirconium and hafnium always exist 

together and scientists were unable to distinguish these elements for a long while. 

Comparing the two tables, namely the commonly used Periodic Table (independently of 

its modern graphic representations) and the Periodic Table of the Atoms (presented in Table 

1), we see the difference in the disposition of some of the heaviest atoms in them. In 

particular, in accord with the solutions of the wave probabilistic Equation (1), gadolinium 

64Gd, but not tin 50Sn and lead 82Pb, is situated in the same column as carbon 6C, silicon 14Si, 

and germanium 32Ge. Similarly erbium 68Er, but not xenon 54Xe and radon 86Rn, is in the 

column with neon 10Ne, argon 18Ar, and krypton 36Kr.  

The unique feature of the Generalized Table is that all atoms are arranged in it in accord 

with the quasi-similarity of their external atomic shells. Based on the all above facts and 

other data (including some not mentioned here), we have the right to state that the 

aforementioned atoms, together with lanthanides and actinides, find their true places in the 

Law of Periodicity. Actually, nothing can be said against it, because the primary thing is, 

obviously, the structure of individual atoms, and the consequences of the structure, to which 

chemical properties relate, are secondary. 
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An analysis of the results obtained and of the data known in chemistry shows that the 

chemical bonds, predicted by the outer shell, dominate. Thus, the nodes of all shells in some 

degree also participate in the formation of chemical bonds. Accordingly, all shells are 

“valent” ones. Atomic bindings are realized along the bonds of nearest nodes of the external 

shell and nearby internal shells of interacting atoms. The nodal structure of atoms influences 

the structure of molecules, i.e., their geometry and interatomic bonds. The formation of 

molecules is accompanied by the overlapping (mainly two or three multiples) of interacting 

nodes. These questions were a discussion theme in 2003 at the Eighteenth International 

Conference on the Interfaces among Mathematics, Chemistry and Computer Sciences [21], 

and at the Seventh International Conference on Intermolecular and Magnetic Interaction in 

Matter [22]. 

Thus, following the physical shell-nodal atomic model, atoms represent a system of 

characteristic spherical shells with nodal points, where the wave function has extremal 

values, expressing the discrete structure of these shells. The number of potential (or, in equal 

degree, kinetic) polar-azimuthal extremal points (nodes) indicates the ordinal number of the 

concrete atom Z. The principal constituents of atoms are hydrogen atoms located in the 

potential nodes. It should be also noted, in addition, that the simplest atom, namely hydrogen 

H1

1
 (protium) although being an elementary building block of the Universe at the atomic 

level (i.e., the basis particle of the atomic level), has a complicated structure as well. It is 

defined by solutions of the same wave equation (1), but consists of the particles from the 

deeper subatomic levels of the Universe not considered here.  

 

5. Conclusion 

The results of the analysis of the particular solutions of the general wave equation (1), 

finished mainly to 1996 and presented then for the first time in a three-volume book 

“Alternative Picture of the World” [23], led to an important discovery, according to which the 

atoms have, if they are regarded as the wave formations, the shell-nodal structure identical to 

the nodal structure of standing waves in the spherical space, reminding per se the nucleon 

molecules. These solutions, represented for the first time in physics in the graphical form as it 

is implemented in Fig. 1 (which then has been carried over in Table 1) have shown the 

interesting features of the atoms. Namely, the presented images of their nucleon structure 

clear manifest the definite regularity in a sequential number of all the existing atoms. This 

regularity is expressed in the fact of analogy (quasi-similarity), in the definite extent, of the 

nodal structure of completed external atomic shells in each group of the atoms 

(corresponding to each column in Fig. 1) characterized by the different orbital numbers l at 

the same azimuthal number m. 

Considering the above output, it was natural to assume that the observed periodicity in 

the shell-nodal structure of the atoms is the primary cause of the periodicity in chemical 
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properties of the corresponding elements, which has long been noticed and formulated as the 

Periodic Law beginning from the time of Mendeleev’s discovery. The Periodic Law states 

that many of the physical and chemical properties of the elements tend to recur in a 

systematic manner with increasing atomic number. 

The nodal structure of outer atomic shells, presented in Fig. 1 and Table 1 in the form of 

the schematic (conditional) images, entirely correlates with the elementary nodal structure of 

molecules and crystals, observed experimentally, and, hence, correlates with their symmetry. 

This revelation is a result of the comprehensive analysis of those data that to the present time 

were accomplished, in particular, of the data discussed in [21, 22].  

Another important result, justifying in favor of validity of the shell-nodal atomic model 

and, hence, in favor of rightfulness of wave concepts of dialectical physics on the structure of 

matter in the Universe, is the following. A description of the three kinds of fundamental 

interactions (excluding weak), distinguishing in physics, from the unit point of view, that is 

impossible in principle in modern physics by the Standard Model, became now possible in 

the framework of the Shell-Nodal Atomic Model by the Universal Law of Exchange followed 

from the Dynamic Model of elementary particles (DM) [24]; moreover, it is realized logically 

irreproachably and uncontradictory. The DM is an integral part of the shell-nodal atomic 

theory of dialectical physics developed by the authors of the capital monograph [7].  

The fundamental interactions that we mean, resting on the wave shell-nodal atomic 

model, are: between the nodal hydrogen atoms belonging to an individual atom (intra-atomic 

internodal bonds, strong interactions, considered in modern physics as “nuclear”), between 

the nodal hydrogen atoms belonging to external shells of the different interacting atoms 

(interatomic internodal bonds, electromagnetic interactions, chemical processes), and the 

universal interaction between any particles and bodies (gravitational interactions). We will 

discuss this issue and show the corresponding calculations of the above interactions further in 

a separate Lecture. 

The discrepancy found between the positions of some elements set in the corresponding 

groups: in the commonly used Periodic Table (designed on the basis of the experimental data) 

and in the Theoretical Periodic Table (Table 1), is the result of fundamental importance for 

understanding the true nature of the Periodic Law. We pay attention, in particular, to the 

position of gadolinium 64Gd (belonging to lanthanides) that have to take a place in the IV 

group of the Periodic Table, instead of 50Sn and 82Pb, together with carbon, silicon and 

germanium; and the position of erbium 68Er (also related to lanthanides) that should take the 

place, instead of 54Xe and 86Rn, in the VIII group with neon, argon and krypton, etc.  

The elements-lanthanides of the Periodic Table indicated above with respect to the 

observed property of the quasi-periodicity are on their true places in the Theoretical Periodic 

Table (Table 1). Other lanthanides and also actinides, set in the Periodic Table separately, 

take in Table 1 their proper places as well. We are sure stating about the true ordering of 
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them in Table 1, because, as was mentioned above, the structure of individual atoms is 

primary for the Periodic Law, and consequences of the structure, to which the chemical 

properties relate, are secondary. A revision of the conventional conceptions of physics 

realized, in particular, in the Periodic Table, in which the position of some elements, 

including indicated above, call doubts, is inevitable in view of the discovery of the shell-

nodal structure of the atoms. As soon it may happen depends on when the Wave Model will 

be recognized and accepted finally in physics. 

Currently, the Shell-Nodal Atomic Model and the Theoretical Periodic Table of the Atoms 

(Table 1), as reflecting the objective properties of matter at the atomic level of the Universe, 

beginning to attract deserving attention of official physics, as evidenced, for example, the 

invited review articles on this issue published in the books [3, 25]. The arguments presented 

there and in these Lectures, along with the data presented in some of the other publications 

indicated in References, are sufficiently substantiated and convincing in order to the 

overwhelming majority of physicists have recognized the shell-nodal atomic model.  

From our point of view, the shell-nodal atomic model deserves a special attention as 

being a unit real alternative for replacing the modern quantum-mechanical atomic model. The 

latter exhausted itself completely and its adequacy (validity) causes the justifiable doubts [6, 

26-27].  
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Lecture 5 

 

The Nature and Structure of Isotopes 
 

 

1. Introduction 

The Wave Model, including the shell-nodal atomic model based on the particular 

solutions of the wave equation and the dynamic model of elementary particles, accounts for 

all physical phenomena related to the atomic structure [1]. In particular, in previous Lecture, 

we have analyzed the fundamental regularities inherent in the atoms having the shell-nodal 

structure. They consist in repeatability in the definite extent of disposition of the nodes on 

successive wave atomic shells. These regularities led to revealing the nature of Mendeleev’s 

Periodic Law and, on this basis, to the correct arrangement of the atoms reflecting this Law in 

the form called the Theoretical Periodic Table of the Atoms.  

Now, we will show how such a wave atomic model reveals the nature of atomic isotopes. 

In view of the obtained solutions, we will give the answers to the following principal 

questions. What is the internal structure of all isotopes of an atom: natural stable and 

unstable, and synthesized short-lived? How does the wave atomic model predict the complete 

variety of all possible isotopes, including the ultimate ones, lightest and heaviest, for all 

atoms of the Periodic Table?  

The “electron structure (configuration)” of atoms, which is a major outcome of 

Schrödinger’s quantum-mechanical atomic theory, is unable to explain the nature of isotopes 

in principle and, hence, give no answers to the above questions. In accord with the definition 

accepted in modern physics, isotopes are atoms that have the same number of protons, but the 

different number of neutrons in own nuclei. The nuclei of some isotopes are unstable. They 

emit radiation and break down to form smaller nuclei.  

The above statements express only the experimental fact about existence of the same 

atoms with different masses. At that, the given definition, characterizing isotopes, is 

formulated considering the quantum-mechanical nuclear model of atoms (QM). However, 

accepting the concept on an existence of the atomic nuclei, the modern theories of physics 

(atomic and nuclear) nothing can say about how the nucleons in each of all atomic isotopes 

are disposed spatially inside their nuclei. Let us take, for example, one of the stable isotopes 
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of the nickel atom Ni58

28  having 58 nucleons. How 58 nucleons are disposed in its nucleus? 

For modern physics, it is an unsolvable problem in principle. Why? Yes because there is no 

nuclei. The nuclear model of atoms is wrong. This assertion follows not only from analysis of 

all the data on this matter [1- 3], but even from the point of view of common sense. 

Really, following the QM, an atom consists of a central nucleus of about cm1310  radius 

filled with Z protons and AZ neutrons, and Z electrons, moving around the nucleus in an 

atomic space prescribed by a radius of order cm810 . From this it follows that linear sizes of 

an atom and its nucleus (where, as believe, practically the whole atomic mass is concentrated) 

relate approximately as 1:105  and their volumes as 1:1015 .  

Thus, in essence, the quantum-mechanical atom represents an empty space occupied with 

continuously moving relatively light electrons to which the key role is ascribed in forming the 

whole variety of substances, molecular and crystalline structures. Let us imagine an atom 

scaled up to 3310 m . The heavy nucleus of an unimaginable density (more than 31410 cmg ) 

in its center will look like an invisible mote of about 3310 mm . Obviously, the common 

sense opposes such an image of nature at the atomic level. 

Following the wave shell-nodal atomic model, originating from the particular solutions 

of the wave equation, each atom has the strictly definite internal nodal structure (see Fig. 1 

and Table 1, L. 4). On the basis of a comprehensive analysis of individual peculiarities of the 

nodal structure inherent to each atom, the mystery of the origin of atomic isotopes is revealed 

in a natural way.  

Hydrogen atoms are the main structural units of the atom. In stable atoms, they are 

located mainly in potential nodes of the corresponding spherical shells. The total number of 

the nodes in an abstract atom, its nodal measure, as a totality of probabilistic discrete units, 

can be easy counted up from solutions presented in the form of images of these nodes 

depicted in Fig. 1 of L. 4.  

The number of the nodes, which, in principle, can be filled with matter (particles), and 

multiplicity  of their possible filling define the relative mass of the atom, A. As was already 

noted (in previous Lecture, see Eq. 4 there), the relative mass of an atom is defined by the 

total number of hydrogen atoms located in the nodes (excluding kinetic) of the corresponding 

shells of a concrete atom in accord with the following formula: 

)( vivigi

i

gipk

k

pk ZZZA   ,     (1) 

where k and i are the numbers of polar (m = 0) and azimuthal ( m ≠ 0) shells, respectively; Zpk 

is the number of polar potential-kinetic nodes of k-th polar shell; Zgi and Zi are the number 

of potential principal and collateral polar-azimuthal nodes, respectively, of the i-th polar-

azimuthal shell; pk , gi, and i are the numbers of the multiplicity, i.e., filling the nodes . 
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The node multiplicity  is equal to the number of hydrogen atoms in the node. For atoms of 

space and matter  is equal to 0, 1 or 2: 



















2

1

0

.       (2) 

A successive series of solutions of the wave equation of matter-space-time is naturally 

determined by the ordinal numbers of principal polar-azimuthal nodes, which are a natural 

bound of each elementary solution. These solutions are realized in objective space in the form 

of atoms of matter-space. 

Thus, an existence of the different nodes and multiplicity of their filling in the wave 

shells of the atoms (see Fig 1, L. 4) are the main reason for an existence in Nature of different 

atomic isotopes, stable and unstable (radioactive), and the reason of possibility for 

synthesizing the many other short-lived isotopes inherent in every atom. We mean the filling 

of both the numbered principal potential polar-azimuthal nodes and unnumbered potential 

collateral nodes, and also the numbered polar potential-kinetic (axial) nodes.  

We will demonstrate now the filling of the above nodes on concrete examples. Our 

consideration is focused mainly on an internal structure of all possible isotopes of the carbon 

and oxygen atoms. The given atoms form a great variety of compounds and are the most 

studied atoms among all atoms. Therefore, we assume that for the present consideration the 

choice just of these atoms is optimal. 

 

2. Shell-nodal structure of carbon and its isotopes 

According to the obtained solutions, characteristic shells of the carbon atom are defined 

by the following quantum numbers: 2,1,0l  and 1,0 m . 

Radial functions of the even solutions (9), defining the characteristic shells of the carbon 

atom, are presented in Table 1 (through their relative values Rl /A) and drawn in Fig. 1. 

 

 

Table 1.  The radial functions of even solutions for the carbon atom. 

l   




 
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



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1 lll iYJAR  

0      (sin ± i ( cos)) / 
 

1      (( -1 sin  cos) ± i ( -1 cos  sin))  -1 
 

2      [((3 -2  1) sin  3  -1 cos)) ± i ((1  3 -2) cos  3  -1 sin))]  -1 
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Fig. 1.  Plots of the radial spherical functions of the carbon atom: potential )(
2 2

1 



l

J  (a) 

and kinetic )(
2 2

1 



l

Y   (b).  

 

The reduced polar-azimuth potential functions, ),(
~

, mlY , for the carbon atom are 

presented in Table 2; their graphs are drawn in Fig. 2. 

Contour plots of the potential components of density of probability p  for the carbon 

atom are presented in Fig. 3. Pictures presented in this Figure are the sections of p  (i.e. the 

sections of the product of the three functions:  radial )(lR , polar )(,  ml , and azimuthal 

)(m
) in the plane .  

 

Table 2. The reduced polar-azimuth potential functions ),(
~

, mlY  of the carbon atom 
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Fig. 2. Graphs of the polar-azimuthal functions  mml cos)(,  of the carbon atom. 

 

Fig. 3. Contour plots (an interference image) of the sections for the potential density of 

probability  in the plane  for the space of the carbon atom.  
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It should be noted that the pictures depicted in Fig. 3 are, in accord with the particular 

solutions of the wave equation, the interference images of modes of standing waves in the 

three-dimensional spherical space.  

A characteristic feature of the shell at l = 2, m = 0 is an existence of a toroidal vortex-

ring. Obviously, the latter plays an important role in physical and chemical processes at the 

atomic and molecular levels. We assume that it is responsible for some of the unique 

properties of graphene  an atomic size thickness layer of graphite – observed in last years. 

Therefore, we show this ring once more in Fig. 4 in the two projections: for the section along 

the z-axis (in a plane perpendicular to the plane (x, y), as in Fig. 3), and additionally for the 

section 0z  in a plane (x, y). 

The next peculiarity of the solution is an existence of the nodes along the z-axis which 

we call polar nodes. The 2n and 2s, “north” and “south”, polar nodes, corresponding to l = 2, 

are indicated in Fig. 4. 

 

 

Fig. 4. The solution )cos()()( ,   mRC mllp  of the wave equation  0ˆˆ 2  k   

for the spherical shell of the carbon atom characterized by the wave (quantum) numbers 

0,2  ml : (a) for a section along the z-axis (in a plane perpendicular to the plane (x, y)), 

(b) for a section 0z  in a plane (x, y); 2n and 2s are, respectively, the “north” and “south” 

polar nodes belonging to the shell. 
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The solutions   mRC mllpml cos)()(),,( ,,  for constr   of the probabilistic 

wave equation presented in the form indicating the relative space disposition of potential 

extremes-nodes  discrete elements of the shell-nodal structure of the carbon atom  are 

drawn schematically in Fig. 5. Numbers 1, 2, 3, …, 6 are the ordinal numbers of the principal 

polar-azimuth nodes coinciding with the atomic numbers of the elements Z of the Periodic 

Table. 

Thus, Fig. 5 demonstrates an unfolded schematic image of spatial arrangement of the 

potential nodes (and the toroidal vortex-ring) on the concrete wave spherical shells 

(corresponding to the definite value of l) and subshells of the shell (corresponding to the 

definite value of m); these nodes and the toroid constitute the carbon atom. In light of the 

shell-nodal structure, the carbon atom is in essence one of the elementary molecules of 

hydrogen atoms (as all of the remaining atoms of the Periodic Table, excluding the hydrogen 

atom itself). 

 

 

Fig. 5. The schematic drawing of the nodes and a toroidal vortex ring in the carbon atom: 0, 

1N, 1S, 2N, 2S is the ordinal number of the polar potential-kinetic nodes (located along the z-

axis, m = 0); 1, 2,…, 6 is the ordinal numbers of principal polar-azimuthal potential nodes. 

The nodes 1 and 2 belong to the internal spherical shell, l = 1; the nodes 3, 4, 5, and 6 are 

located on the external spherical shell, l = 2. 

 

The unfolded shell-nodal structure of carbon C12

6  and its polar-azimuth functions are 

shown in Fig. 6. The carbon atom has a central empty node ( 0,0  lm ) and four spherical 

shells: two shells ( 2,1;0  lm ) with four empty potential-kinetic polar nodes and one 

ring, two shells ( 2,1;1  lm ) with six completed potential polar-azimuth nodes and six 
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empty kinetic polar-azimuth nodes. The last (kinetic nodes or antinodes) are shown neither in 

figures of previous Lectures nor Fig. 6. Antinodes are the places of intensive motion and 

nucleons cannot be in rest in them. Six potential polar-azimuth nodes (at 1m ) are each 

filled with two hydrogen atoms and lie in one plane: two potential nodes are in the inner shell 

(l = 1) and four such nodes are in the outer shell (l = 2). Six empty kinetic nodes (not shown 

here) lie on kinetic radial (spherical) shell in a perpendicular plane with respect to the plane 

of disposition of the potential nodes. 

The main mass of hydrogen in Nature at all its levels is in coherent states, in particular, in 

the form of coupled atoms – hydrogen molecules H2. Note that at the megalevel, in the 

cosmos, about one half of all stars form (star) pairs. Paired hydrogen atoms, filling polar-

azimuthal nodes, provide the equilibrium state of atomic shells. The condition of coupling, 

inherent in the hydrogen atoms located in the nodes of individual atoms, is probably inherent 

also for individual atoms themselves at the formation of molecules and crystals; we shall turn 

to this subject later. 

 

 

 

Fig. 6. (a) Plots of the potential polar-azimuth functions  mml Cos)(,  ( 2,1,0l ; 

1,0 m ), (b) the extremal points of their angular spatial positions (defining the position of 

the nodes) on the potential radial shells )(lR , and (c) the symbolic designation of the shell-

nodal structure of the carbon atom. 

 

Since all potential polar-azimuth nodes with hydrogen atoms inside them are situated in 

the same plane, the structure of the carbon atom, being spherical like every atom, looks like a 

plane. Thus because of the specific geometry of the location of the nodes, carbon atoms can 
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form the plane hexagonal structure of graphite. The symbolic designation of carbon  (Fig. 

6c) reflects such a plane geometry of arrangement of its six principal polar-azimuth nodes 

and shows the shortest directions of exchange (interaction) between them. Accordingly, each 

carbon atom is associated in shell-nodal atomic model with one of the exo-pentagonal bonds 

of the truncated icosahedron. 

The same individual properties characteristic for all isotopes of an atom, i.e., for those 

atoms characterized by the same ordinal number Z and different mass number A, are defined 

by the same fixed (unchanged) structure of their external atomic shells. While the structure of 

the shells is not broken, the properties are saved even when the principal polar-azimuth nodes 

of the external shells are not completed with the paired hydrogen atoms, i.e., when each of 

their nodes contain only one hydrogen atom. Naturally, such a state will not be equilibrium 

and is a temporal state characterized by a lifetime. Thus, the geometry of external polar-

azimuth shells and hence specific strong intra-atomic bindings between nodes in such 

isotopes do not change only during the lifetime of unstable, in this case, atom. 

 

 

Fig. 7. The filling of the potential nodes with hydrogen atoms in the stable isotopes of carbon 

 C12

6 , C13

6 , C14

6 , and in two of its unstable isotopes (lightest and heaviest, respectively)  C8

6  

and C22

6 . 

Hence, following the shell-nodal structure depicted in Fig. 6, the uniquely possible 

lightest unstable isotope of carbon is C8

6  with the mass number 8 (the total number of H-

atoms). The order of filling the nodes in this isotope is exhibited in Fig. 7. Of course, the 

structures with incompletely filled principal potential nodes cannot be equilibrium, and as 

metastable states they are characterized by a definite lifetime. 
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Carbon is made up of isotopes with masses 12, 13 and 14. An isotope of carbon C13

6  can 

be obtained under the condition of filling the central vacant node in the carbon C12

6  with one 

hydrogen atom as shown in Fig. 7. This isotope is stable. Apparently, a specific configuration 

of internal fields and internodal bindings in C13

6  provides the stable state of the single 

hydrogen atom in the central polar-azimuthal potential-kinetic node. 

The two possible structures of carbon C14

6  (Fig. 7) can be formed by filling the central 

node with two hydrogen atoms or by filling two vacant nodes of the first polar shell 

( 0,1  ml ) with one hydrogen atom per node. Both these structures of the isotope are 

unbalanced, for this reason the carbon isotope C14

6  is unstable, radiogenic. Nevertheless, this 

is a long-lived isotope. Its half-life is 5730±40 years, apparently, because of a specific 

symmetry of the filled nodes and, hence, due to a specific symmetrical structure of its 

resulting binding fields. 

The maximal mass number of carbon cannot exceed 22 in any way. This fact follows 

from the aforementioned solutions. The total number of its nodes (excluding purely kinetic 

ones not shown in the figures), axial potential-kinetic polar and principal potential polar-

azimuth, is 11, and multiplicity cannot exceed 2; hence, 22211  . 

 Actually, the carbon C22

6  is the heaviest artificially produced short-lived isotope of 

carbon [4]. It is obtained forcibly by filling all vacant polar nodes (by the neutron exposure 

on accelerators) with paired hydrogen atoms, as is shown in Fig. 7. The matrix of polar-

azimuth discrete structure of carbon (see a matrix of the nodes (23), L. 4) ml ,C  and matrices 

of filing its nodes by hydrogen atoms for the above (Fig. 2) cases have the following forms: 

 

      ml ,C =

042

022

001

;       (3) 

 

C12

6 =

080

040

000

;     C8

6 =

040

040

000

;    C22

6 =

084

044

002

   (4) 

 

Remember, in the matrices of the nodes, the columns correspond to the azimuthal 

number: 0m , 1m , 2m , 3m , ..., i.e., to the ordinal number of wave atomic 

subshells; the rows correspond to the number of the radial functions: ...,5,4,3,2,1,0l , i.e., 

to the ordinal number of the wave atomic shells.  
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Fig. 8. A schematic image of the nodal structure of all possible isotopes of carbon, from 

lightest C8

6  to heaviest C22

6  , arising from the particular solutions of the wave equation. 
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The above described filling of only external nodes by one hydrogen atom, in the lightest 

unstable isotope of carbon, is inherent in lightest isotopes of the most of atoms with integer 

external shells: 

   ...,100,84,72,64,60,52,40,28,22,10,6,2Z      (5) 

Silicon and germanium, 32and14  ZZ , respectively, having completed external shells, 

1,3  ml  and 1,4  ml , are exceptions. Why? The external integer shells of silicon  

and germanium contain collateral nodes that differ these atoms from 6C, 10Ne, 22Ti or 28Ni 

(see Fig.1, L. 4). The rest of atoms, including oxygen 8O, have half-integer external shells 

lying in the equatorial plane. 

The shell-nodal structure of all possible isotopes of the carbon atom (from lightest to 

heaviest), originated from the solutions of the wave equation, is shown in Fig. 8. 

 

3. Shell-nodal structure of oxygen and its isotopes  

The spatial shell-nodal structure of the oxygen atom O16

8  and its polar-azimuth functions, 

originating from the shell-nodal atomic model (in full conformity with the solutions depicted 

in Fig. 1 (L. 4), are drawn in Fig. 9.  

The oxygen atom has one more shell compared with the structure of carbon. It is a half-

integer external shell ( 2;
2

1
 ssml ) with two of its potential polar-azimuth nodes (the  

seventh and eighth) lying in the equatorial plane. They can be either in the same plane or a 

perpendicular plane with respect to the disposition of the rest nodes, as shown in Fig. 3b. 

Note again that all of the empty kinetic polar-azimuth nodes (not shown in Fig. 9) are in 

the plane perpendicular to the plane containing the potential nodes. Obviously, the polar 

nodes disposed on the axis of symmetry, namely the Z-axis, are simultaneously potential and 

kinetic. 

Since all nodes inside the oxygen atom are situated in the same plane (we refer to the first 

variant of the solutions presented in Fig. 9a), the spherical structure of oxygen atom looks 

like a plane. Thus, because of the specific geometry of disposition of its nodes, oxygen atoms 

can form the plane hexagonal structure pertinent, in particular, in snow crystals [5]. The 

symbolic designation of oxygen depicted in Fig. 9c reflects such a plane geometry of the 

arrangement of its eight principal polar-azimuth nodes and shows the shortest directions of 

exchange (interaction) between them. 

The structure of all possible isotopes of the oxygen atom, as every atom in the shell-nodal 

atomic model, is uniquely defined by the multiplicity of filling both external potential polar-
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azimuthal nodes and polar potential-kinetic nodes. The relative masses of the isotopes 

calculated on this basis completely coincide with the experimental data. 

 

 
 

Fig. 9. Plots of the polar-azimuth functions )Cos()(,  mml  ( 2,1,0l ; 1,0 m ) and 

their extremal points on radial extremal shells )(lR  of the oxygen atom: (a) 0 ; (b) 

2/  for the external half-integer shell at sml )2/1(  and 2s ; (c) the symbolic 

designation of oxygen (at 0 ). 

 

Let us consider the filling of external nodes by hydrogen atoms in the lightest unstable 

isotope of oxygen. The oxygen atom has the half-integer external shell sml
2

1
 , where 

2s , with two nodes, 7-th and 8-th (see Fig. 9). Nate that the fully completed external shell 

at 2;2  ml  correspond to the neon atom (turn to L. 4, see Fig. 1 and Table 1 there). The 

nearest completed integer shell of oxygen is its internal shell at 1;2  ml . Resting upon 

the experimental isotope data, one can state that even if a part of nodes of the aforementioned 

nearest integer shell does not contain coupled hydrogen atoms the character of strong 

bindings temporarily keeps as well.  

We can now suppose that half of the nodes of the last integer shell of oxygen have 

coupled hydrogen atoms and another half contains single hydrogen atoms. Then, following 

the shell-nodal structure depicted in Fig. 9, the uniquely possible lightest unstable isotope of 

oxygen is O12

8  with the mass number 12 (corresponding to the total number of hydrogen 
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atoms in the isotope). The order of arrangement and filling of the nodes in this isotope is 

demonstrated in Fig. 10.  

It is possible as well that there is an additional unstable structure of O12

8  (not shown in 

Fig. 10) in which the last integer shell (l = 2, m = ±1) contains one hydrogen atom in each of 

its four nodes and the external half-integer shell is filled fully by paired hydrogen atoms.  

The isotope of oxygen  O17

8  can be obtained under the condition of filling the central 

vacant node in the stable isotope O16

8  with one hydrogen atom. Filling the central node with 

two hydrogen atoms or two vacant nodes of the first polar shell ( 0,1  ml ) by one 

hydrogen atom per node, we arrive at the two possible structures of the oxygen isotope O18

8  

(Fig. 10). Both isotopes, O17

8  and O18

8 , are stable because of symmetry (as is the isotope of 

carbon C13

6 ). 

 

 

Fig. 10. The shell-nodal structure of some isotopes of oxygen following from the solutions of 

the wave equation: 3 stable isotopes ( O16

8 , O17

8  and O18

8 ) and 5 short-lived unstable isotopes 

(including lightest O12

8  and heaviest O26

8 ). 

From these solutions it also follows that the maximal mass number of oxygen is 26: the 

total number of all its nodes (excluding kinetic) is 13 and the maximal multiplicity of their 

filling is . Actually, the oxygen O26

8  is the heaviest artificially produced short-lived 

isotope of oxygen [4]. It is obtained forcibly by filling all of the vacant polar nodes with 

paired hydrogen atoms as is shown in Fig. 10. 

The matrix of nodes of oxygen ml ,O  and the matrices of filing its nodes by hydrogen 

atoms for the above cases have the forms: 
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ml ,O =

242

022

001

;      O16

8 =

480

040

000

;      O14

8 =

280

040

000

  (6) 

 

 O12

8 =

260

040

000

      or     O12

8 =

440

040

000

;   O26

8 =

484

044

002

  (7) 

The peculiarity of filing the nodes in the lightest oxygen isotopes also occurs with the 

lightest isotopes of the remaining atoms with half-integer external shells (at least as far as 

Br67

35 , which has been confirmed experimentally). The same situation is realized with the 

lightest isotopes of silicon and germanium, Si22

14
 and Ge58

32 , having integer external shells; 

they were obtained experimentally as well. Integer external shells of silicon and germanium 

contain collateral nodes that differs these atoms from C, Ne, Ti and Ni. Two nodes of their 

next to last integer shell have uncoupled hydrogen atoms, along with all of the uncoupled 

nodes of the external shell. 

 

4. All variety of atomic isotopes  

Let us look at one more example, this time nickel 28Ni. Nickel is heavier than the atoms 

considered above; it contains two collateral nodes in one of its internal subshells (see Fig. 6). 

The matrix of nodes of nickel mli ,N  (its two collateral nodes at l = 3, m = ± 1 are indicated 

in brackets) and two matrices of nodal filling of its short-lived lightest and heaviest isotopes, 

Ni56

28  and Ni78

28  (obtained experimentally as well), are as follows:  

0002

68)2(42

0442

0022

0001

, mlNi       (8) 

0000

616)0(80

0880

0040

0000

56

28 Ni   

0004

1216)4(84

0884

0044

0002

78

28 Ni    (9)  
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The relative masses of the isotopes of all of the atoms of the Periodic Table, originating 

from the particular solutions of the wave equation [6], are graphically presented in Fig. 11 (in 

accord with the matrices of filling and Eq. (1)). 

The extent of deviation from the maximal nodal fillings of both external half-integer 

shells and the next to the last integer shells are responsible for the lightest isotopes, presented 

in Figure 11 above Br67

35 .  

The lightest isotopes of the heavier atoms, below Br67

35 , are exhibited in the Figure only 

for the case when all their integer potential polar-azimuthal shells remain undisturbed (their 

nodes are entirely completed by paired hydrogen atoms), as it takes place, e.g., for the isotope 

of oxygen O14

8  (see Eq. (6) and Fig. 10)). 

The maximal relative masses of all isotopes, shown in Fig. 11, are uniquely possible 

because of the strictly limited number of nodes in every atom, defined by the particular 

solutions of the wave equation 0
ˆ1ˆ
2

2

2







tc
 (see the matrix of nodes (Eq. (23), L. 4)), 

and owing to their limited filling (the multiplicity cannot exceed 2, see Eq. (2)). 

Thus, owing to the different filling  (2) of the various nodes with hydrogen atoms: 

potential principal nodes of external integer and half-integer polar-azimuthal shells, 

potential-kinetic polar nodes, and potential collateral nodes (the latter define the metastable 

states), the same probabilistic element (atom) can be realized in real space with different 

relative masses. Accordingly, any atom of the probabilistic wave field, having the 

characteristic nodal structure, is represented by a series of its own isotopes in accord with the 

formula (1). 

Based on all of the above data we can confidently say that the nodal structure of the 

wave atomic spaces along with the peculiarity of different types of the nodes and, hence, 

different multiplicities of their filling, define the nature and structure of all isotopes.  

A comparative analysis shows that not all isotopes of the atoms, predicted by the 

obtained solutions and shown in Figure 11, were produced experimentally.  

 

5. Natural and synthesized isotopes of hydrogen 

The question may arise at everyone, what isotopes of hydrogen follow from the shell-

nodal atomic model, and what is their shell-nodal structure? As known, in 2003 it was 

announced about synthesising the 7-th isotope of hydrogen H7

1
at RIKEN's RI Beam Science 

Laboratory [7,  8]. The half life of 2.3×10
−23

 seconds, ascribed to this supposed isotope, was 

not purely derived from experimental data; it was estimated, in fact, from “systematic 

trends”. The announced finding was not confirmed independently in none other laboratory. 
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Fig. 11. The complete set of the isotopes derived from the particular solutions of the wave 

equation. 
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However, this fact agrees with the results obtained from the solutions of the wave 

equation for the hydrogen atom, in the framework of the shell-nodal atomic model. 

According to the latter, the hydrogen atom has 5 nodes (see Fig. 12): three potential-kinetic 

polar: 0, 1N, 1S, and two polar-azimuthal, one of them is potential 1 and another  kinetic, the 

last not shown in the presented Figures. Hence, from the latter it follows that potentially the 

hydrogen atom can have maximum 8 isotopes (at maximal multiplicity =2 and excluding 

filling the kinetic node). Let us show this. 

 

 

Fig. 12. A scheme of the nodes of the hydrogen atom according to the solutions of the wave 

equation; the node 1 is the first of the principal polar-azimuthal nodes whose ordinal numbers 

coincide with the atomic numbers of the elements of the Periodic Table. 

 

The first place in Theoretical Periodic Table of the Atoms (Table 1 in L. 4) under the 

ordinal number 0 takes the neutron designated as 0H. It corresponds to the solution of the 

wave equation at l = 0 and m = 0 resulted in one node (see, e.g., the nodes depicted in Fig. 5). 

 

 

Fig. 13. The filling of the nodes with nucleons in the wave shells of the seven of the total 

eight possible isotopes of the hydrogen atom. 
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The hydrogen atom 1H has the ordinal number 1 corresponding to the solution at l = m = 

0 and l = 1, sm
2

1
  at s = 1 (a half-integer equatorial shell of the subshell at 1m , see 

Figures 5 and 12 and also Fig. 1 in L.4). Having, according to the solutions, the nodes 

indicated in the above Figures, nucleons will fill the nodes respecting as far as possible the 

higher symmetry as shown in Fig. 13. Of course, if we can fill the half-integer shell (s = 1) 

with coupled nucleons (to maximal multiplicity = 2), we will arrive at the last extremely 

unstable of the possible synthetic isotopes of hydrogen, H8

1
. 

The variants of filling the nodes can be different for the same isotopes. For example, the 

isotope H3

1
 can have also the form like H2

1
with additionally filled by a nucleon one of the 

polar nodes, 1N or 1S, etc. 

The probability of forming the half-integer shell at s = 1 (not shown in the Figure) and 

filling the only node on it has little likelihood, therefore we not show it here. The H1

1
 

(protium), H2

1
 (deuterium), and H3

1
 (tritium) are three naturally occurring isotopes, among 

them tritium is unstable (a half-life is 12.32 years). Other, highly unstable isotopes have been 

synthesized in the laboratory but not observed in Nature. 

 

6. Isotopes of helium 

The helium atom 2He of the ordinal number 2 has completely filled shells corresponding to 

the solutions at l = 0, 1 and 1,0 m  (see Fig. 5). The total number of the nodes, excluding 

kinetic, but including potential-kinetic polar nodes 2N and 2S related to the solution at l = 2 

and m = 0, is 7 (Fig. 14).  

 

Fig. 14. A scheme of the nodes of the helium atom without (a) and with (b) taking into 

account the two potential-kinetic polar nodes, 2N and 2S, located on the Z-axis of the wave 

spherical shell corresponding to the solution at l = 2 and m = 0. 
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Fig. 15. A scheme of filling the nodes in possible isotopes of the helium atom admitted by the 

particular solutions of the wave equation. 
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We must consider the above polar nodes in spite of they are related to the next shell 

(belonging to the atoms with ordinal numbers from 3 up to 10). The matter is that these nodes 

are on the axis of symmetry Z and their possible shortest-time filling at the corresponding 

conditions (at synthesizing in a laboratory), making the helium atom superheavy, will not 

influence on its individual properties which are defined (as for any atoms) exceptionally by 

the structure of the external polar-azimuthal shells.  

The potential polar-azimuthal nodes under the ordinal numbers 1 and 2 are the first of the 

principal potential polar-azimuthal nodes coinciding with the atomic numbers of hydrogen 

and helium, respectively. 

The continuous contour lines in Fig. 14 of the polar-azimuthal functions of the helium 

atom (in accordance with theis images depicted in Fig. 2) relate to the solutions at 1,0l  and 

1,0 m . They indicate the spatial position of the nodes and a toroidal wave vortex. 

Having, according to the solutions, the nodes indicated in the Figure, nucleons will fill the 

nodes respecting as far as possible the higher symmetry as shown in Fig. 15. 

To present time there are 9 known isotopes of helium. Among them, the isotopes He3

2
 

and He4

2
 are stable. The remaining isotopes are short-lived with different half-lifes. The 

lightest isotope He2

2
 (known as a diproton) is an extremely unstable isotope of helium, so 

that its half-life even was not estimated. The nodes of its external polar-azimuthal shell (see 

Fig. 15) are half-filled that makes it impossible to keep this shell unchanged at least for some 

reasonable in time instant.  

The heaviest synthesized radioisotope He10

2
, obviously, corresponds to the complete 

filling of all of the nodes in the shell-nodal structure of helium depicted in Fig. 14a. However, 

in accord with the shell-nodal atomic model, other variants of filling the nodes are also 

possible as demonstrated in Fig. 15. In these cases, it takes place the participation of the polar 

nodes, 2N and 2S, of the external shell related to the solutions at l = 2, m = 0 (see Fig. 14b). 

Thus, as follows from the shell-nodal structure, the heaviest isotope of helium is likely He14

2
. 

 

7. Conclusion 

Thus, in accord with the approach developed within the Wave Model of dialectical 

physics, an atom represents a system of the spherical shells with discrete points-nodes of 

wave space filled with the hydrogen atoms to which we refer neutron, proton and hydrogen 

atom H1

1
 (protium).  

The same probabilistic element (an atom) can be realized in the real space with different 

relative masses due to the different filling   with hydrogen atoms of its nodes of the different 

types. We mean the principal potential nodes of external integer- and half-integer polar-



http://shpenkov.com/pdf/Vol.5.Shell-NodalAtomicStructure.pdf 

 

 

86 

 

azimuth shells, the potential-kinetic polar (axial) nodes, and the potential collateral nodes 

(the latter are the sites of metastable states). Accordingly, any atom of the probabilistic wave 

field, having each the specific nodal structure inherent just in this individual atom only (see 

the matrix of the nodes (23) in L. 4), is represented by a series of its own isotopes in full 

agreement with the formula (1) and the multiplicity  (2) of filling each of the nodes in its 

shells.  

This implies that atoms do not have a nucleus as is customary assumed in the quantum-

mechanical nuclear atomic model. Actually, the reconsideration of Rutherford’s experiments 

on scattering of - and -particles in matter has shown that the supposition on an existence of 

a superdense nucleus in the centre of an atom has been insufficiently substantiated and its 

acceptation, as follows from the data published in the last two decades, turned out to be 

mistaken [1-3].  

We see, thus, that having the wave shell-nodal structure, the new molecular-like 

(multicentric) atomic model essentially differs from the nuclear (monocentric) quantum-

mechanical and Rutherford-Bohr atomic models. Accordingly, dialectical physics contrary to 

modern (official) physics explains all physical phenomena in a different way.  

In particular, by now with taking into account the shell-nodal structure of the atoms and 

the dynamic model of elementary particles, some of the well-known phenomena were 

essentially reconsidered. As a result, it was revealed the nature of the phenomena 

ununderstandable in the framework of the Standard Model of modern physics and explained 

the true nature of the phenomena misunderstood until now [3] (some of them were considered 

in previous Lectures contained in a given series of the Volumes). All these facts underline an 

advantage of the wave concepts lying in the foundation of the new atomic model. 

It is to the point to note here that contrary to particular solutions of the general 

(“classical”) wave equation 0
ˆ1ˆ
2

2

2







tc
 which uncover the wave shell-nodal structure 

of matter (atoms), the quantum-mechanical “solutions” of Schrödinger’s equation led, as 

turned out groundlessly, to the subjective notion of “electron structure” (“electron 

configuration”) of atoms. It was the great conceptual error [9]. For this reason, it is quite 

natural that Schrödinger’s solutions, as erroneous, do not give any information about the 

nature and structure of atomic isotopes.  

Thus, the revealing of the nature and structure of all possible isotopes is a very important 

result which, along with many other unique data already obtained in the framework of the 

Wave Model, confirms the reliability of the solutions that led to the discovery of the shell-

nodal structure of the atoms. Evaluation of intrinsic and extrinsic binding energies between, 

respectively, the filled nodes in the individual shell-nodal structures (intra-atomic bonds) and 

between the filled nodes belonging to different interacting atoms (interatomic bonds) 

confirms also this conclusion. We will consider the latter issue further in these Lectures. 
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Lecture 6 

 

Carbon Compounds 
 

 

1. Introduction 

At the beginning of this Lecture it seems important to recall briefly the fundamental 

concepts and existing circumstances that led to the discovery of the shell-nodal structure of 

the atoms. And then we will proceed to consider the possible variants and peculiarities of the 

interatomic bindings implemented when forming some of the elementary hydrocarbon 

compounds and most common allotropes of carbon, taking into account, naturally, the shell-

nodal structure of the carbon atom. 

All in the Universe at all its levels, including micro- and mega-, is in incessant 

oscillatory-wave motion and, hence, has the wave nature. Wave fields of all objects are 

overlapped herewith. All in the Universe follows the law of rhythm and is in natural 

harmony. Accordingly, the natural harmonic bond exists between all fields, including 

electromagnetic and gravitational, like between any objects and phenomena. 

Recognizing without any doubts the wave nature of the Universe, it is not so difficult to 

come to the conclusion that all phenomena and objects in the Universe at all levels, including 

subatomic, atomic, and molecular, behave obeying the wave laws. This means that they are 

described by the universal (“classical”) wave equation,  

0
ˆ1ˆ
2

2

2







tc
.     (1) 

Taking this statement into account, accepting it completely without any doubts, some of 

the purely mathematical solutions of the wave equation were undergo to the comprehensive 

analysis. This was made in order to disclose objective information about the structure and 

behaviour of matter existing, most likely, in the solutions, as we expected, and which till now 

was “hidden” from physicists (since no one earlier did not notice there it).  

Performing this analysis, we were confident in a positive result of the analysis for many 

reasons. One of them is the fact that the physical meaning of some particular solutions of the 

wave equation has turned out a white spot in science. Why? The wave nature of all 
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phenomena, fields, and objects in the Universe was not regarded in physics as a self-evident 

truth (and still is not regarded as such by majority, unfortunately). That is, universality of the 

wave nature of the Universe was not recognized as the universal being and, hence, this 

fundamental feature was not considered, in general, as the primordial obligatory conceptual 

basis in developing the physical theories. For this reason, the wave concept was not included 

in a series of basic postulates of modern physics theories, i.e., in the foundation of the 

Standard Model. This is why, in particular, the modern physics still cannot find any relation 

between gravitational and electromagnetic fundamental interactions, and, hence, cannot build 

a unified field theory (UFT). Accordingly, intellects of most physicists-atomists were/are 

focused (almost for a century) not on the general wave equation (1) and its solutions, but just 

on Schrödinger’s equation, designed for describing quantum mechanical behaviour, and its 

controversial “solutions”. Up to now, no one raised the question, is whether Schrödinger’s 

equation the viable alternative to the general wave equation, for cognition of atomic structure, 

or not?  

As it turned out with time, quantum mechanics with the Schrödinger equation was unable 

to withstand the fair criticism, and eventually it was revealed that its solutions, really, are 

erroneous. The main reason is that the quantum mechanical equation itself invented by 

Schrödinger, as turned out, with fatal flaws is erroneous originally, being intrinsically 

contradictory. Therefore, it is unable to describe correctly the wave processes at the atomic 

level in principle that is clearly shown, for example, in the analytic articles [1-3]. The 

indicated works, devoted to an analysis of the Schrödinger equation and his so-called 

“solutions”, are subjected all time (after their publication) to the undiminishing interest of 

physicists, judging by feedback; and the conclusion to which the authors of these articles 

have come is now recognized by majority as well-grounded and fair. 

In result of the aforementioned analysis carried out profoundly enough, it was found that 

the well-known particular solutions of the general wave equation (1) de facto, as we have 

assumed, contain information about the structure of matter and about such fundamental 

regularities in Nature which were unknown earlier [4, 5]. Namely, the main discoveries 

obtained in result of the analysis, about which we would like to recall once more in this 

Lecture, concerning the structure of matter and physical processes running in Nature, are the 

following.  

1. Atoms are the wave formations. 

2. As the wave formations, atoms have a quasi-spherical shell-nodal structure coincident 

with the nodal structure of standing waves formed in local volumes of the three-dimensional 

wave space-field. Actually, each atom with 2Z  represents one of the elementary 

molecules of the hydrogen atoms (to which we refer proton, neutron and protium H1

1
). In 

view of the stated above, it should be noted that the Periodic Table of the Atoms represents, 

in essence, the Periodic Table of the Elementary Molecules. 
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3.  Every potential polar-azimuthal node in spherical shells of the atoms contains not 

more than two nucleons. 

4. Along the Z-axis of the atom (in spherical polar coordinates), there are potential-

kinetic polar nodes (which are the nodes of rest and motion simultaneously). These nodes are 

not filled with nucleons in the most abundant and stable atoms. 

5. Exchange (interaction) between the filled nodes inside and outside of the atoms is 

realized on the fundamental frequency of exchange at the atomic and subatomic levels, 

11810869162559.1  se .     (2)  

In accord with the Dynamic Model [6], the fundamental frequency (2) is equal to the 

pulsation frequency of elementary particles. 

6. Exchange at the megalevel (gravitational exchange) is realized by exchange 

gravitational charges qg at the fundamental frequency inherent in the pulsating particles at 

this level, 

1410158082264.9  sg .     (3) 

7. The electromagnetic, strong and gravitational exchanges (interactions) are realized by 

the exchange charges of electrons and nucleons, respectively. The exchange charges of a 

particle, qe or qg, are defined as the product of its associated mass m and the corresponding 

fundamental frequency, 
e  or g :  

1 sgmq ee .  
1 sgmq gg    (4) 

The above enumerated features cardinally change the common view on the structure and 

behaviour of matter. This is in a violent discrepancy with present-day concepts which are the 

base of the Standard Model of modern physics, including atomic physics. The first 

information on the above discoveries has appeared in 1996 in the book (of limited edition) 

entitled “Alternative Picture of the World” [7].  

However, in spite of appearance of the aforementioned unique discoveries and 

convincing proofs of their reality, the basic concepts of modern theory of atoms, judging on 

mainstream publications, are not yet reconsidering and do not undergo any changes. 

Apparently, it happens because of the strong conservatism inherent in science. With this, the 

relatively too short period of time, beginning from 1996, has passed ever since in order to the 

above information became well-known and seriously perceived, a fortiori, at absence of 

extensive publicity.  

For these reasons the modern atomic theory based on Schrodinger’s equation “solutions” 

still continues to be considered as before, almost dogmatically, as the only true and 

unchanged. 
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Fig. 1. The shell-nodal structure of the carbon atom. 

 

Let us turn now to the main subject of the present Lecture. With regard to the carbon 

atom, the schematic images of principal elements of its shell-nodal structure, considered in 

previous Lectures and collected here together, are shown in Fig. 1. Note again that all six 

potential polar-azimuthal nodes (denoted by dark circles) are in the same plane. The 

corresponding kinetic nodes are in the plane perpendicular to the plane of potential nodes. 
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2. Formation of bindings in hydrocarbon compounds 

Thus, in accord with the shell-nodal atomic model, the carbon atom is an elementary 

molecule of the hydrogen atoms, having the ordinal number 6Z  that coincides with the 

number of principal potential polar-azimuthal nodes in its shell-nodal structure. 

A carbon frame is the basis for hydrocarbon molecules. An external shell of the carbon 

atom C12

6  (l = 2, 1m ) having four potential polar-azimuthal nodes (the numbers 3  6; see 

Fig. 1, L. 4) is entirely completed with the coupled hydrogen atoms. The next subshell 

( 2m ) of the same shell, l = 2, with four empty nodes belongs to the neon atom, Ne. An 

atomic number of neon Z = 10 is equal to the number of its principal potential polar-

azimuthal nodes. Neon has all completely filled subshells (at 2,1  mm ) of the shell  l 

= 2. Intermediate solutions (atomic numbers Z = 7, 8, and 9) relate, respectively, to the atoms 

of N, O, and F. All they have half-integer external shells with polar-azimuthal nodes lying in 

the equatorial plane.  

The four empty nodes of the next external shell belonging to neon, which is outside the 

completed shell of the carbon atom, are in an equatorial plane as shown in Fig. 2a,b 

(designated by dotted lines). This shell outside the carbon atom is simultaneously a vacant 

shell for the carbon environment. It plays the role in forming molecules. Four empty nodes of 

the shell can absorb H-atoms from the outside. By this way, the chemical level of bonds is 

realized and hydrocarbon molecules are formed as a result. Accordingly, this shell is called 

the improper shell of carbon. 

Thus, when the improper shell is drawn into a process of interchange (interaction) with 

hydrogen, hydrocarbon molecules are formed. The resulting structure of the improper shell 

repeats the discrete nodal structure (topology) of the external shell of the corresponding atom 

to which this shell is proper (in our case it relates to the neon shell). In a case of chemical 

adsorption of four hydrogen atoms by the nodes of the aforementioned improper shell of 

carbon, the methane molecule CH4 is formed as shown in Fig. 2c. 

The conditional designations of the structures under consideration are drawn on the right 

side of the figures. A structural analog of the methane molecule is the neon atom (Z = 10). 

The latter has the same topology of the disposition of nodes as the methane molecule CH4 

drawn in Fig. 2c. However, external nodes of the neon atom have fully completed equatorial 

nodes by coupled hydrogen atoms. Moreover, they are strongly bound with the rest nodes of 

neon in comparison with the chemical level bonds of the nodes in the improper shell of the 

carbon atom filled with single atoms, resulted in the formation of methane molecules. 

The next possible nodal structure of CH4, when two nodes of the improper shell absorb 

the coupled hydrogen atoms, H2, is shown in Fig. 2d. 
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Fig. 2. A schematic images of the carbon structure (a, b) with indication by dotted lines of 

two nearest empty proper and improper spherical shells and their potential polar-azimuthal 

nodes; the possible ways (c, d) of the formation of the methane molecule CH4 with 

participation of the improper shell of carbon. (Polar nodes are not shown here.) 

 

Further, the radial solutions of the wave equation (1) give a series of radial shells (see 

Fig. 1, L. 3) slowly damped in amplitude (in the radial direction), with alternating zero 

amplitude values determined by a series of zeros of Bessel functions [8]. These shells are the 

proper shells for the atom of the second, third, etc. order. The nearest (second order) proper 

polar-azimuthal shell of carbon (l = 2, 1m ), following the first order completely filled 

external shell, with four empty nodes of the same polar-azimuth angular orientation, is shown 

in Fig. 2a,b by dotted lines. The nodes of the second order proper shell of carbon are in a 

perpendicular plane with respect to the aforementioned nodes lying in an equatorial plane of 

the improper shell. 

A case of the participation of the second order proper radial shell in the formation of 

molecular bonds, resulted in a plane structure of the disposition of all potential constituents in 

methane molecule, is shown in Fig. 3. 
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Fig. 3. An internal structure of the carbon atom C12

6  (a) , and a possible polar-azimuthal 

structure of methane molecule CH4 (b); all chemically adsorbed individual hydrogen atoms 

are in the same plane with the completely filled with coupled hydrogen-atoms proper 

potential nodes of carbon. 

 

The possible structure of the carbon frame in some hydrocarbon compounds is 

demonstrated in Fig. 4. Under the formation of a great number of carbon based molecules 

with C–C bonds, two- and three-multiple overlapping of polar-azimuthal nodes belonging to 

different interacting carbon atoms (or carbon dimer molecules) takes place. An overlapping 

of polar-azimuth nodes is realized along the external and internal bonds of external and 

internal atomic shells, respectively, belonging to contacting carbon atoms, as shown in Fig. 4.  

Two-multiple overlapping of the nodes of carbon atoms, characteristic for a homologous 

series of saturated hydrocarbons and having the general formula CnH2(n+1), is shown in the 

first row in Fig. 4. The three-multiple overlapping of the nodes of carbon atoms is shown in 

the second and third rows in Fig 4. The mixed three-multiple overlapping of the nodes of 

nearby carbon atoms and, partially, of the nodes of carbon atoms with carbon dimer 

molecules C2 is demonstrated with an example of the formation of C6H10 and C8H12 

molecules. The complete three-multiple overlapping of pairs of the coupled hydrogen atoms 

(i.e., of carbon dimer molecules, C2) in graphite, fullerenes, diamond will be shown in the 

next sections.  

From Fig. 4 it follows that among cyclic hydrocarbons CnH2n (cycloalkanes), where 

3n , the more stable is cyclohexane C6H12. An equilibrium topology of the structure of 

atomic bindings in all six bound carbon atoms is not deformed; hence cyclohexane is not a 

strained compound. The most deformed intra-atomic bindings in carbon (with respect to the 

equilibrium structure originated from solutions of the wave equation (1)) are observed in 

cyclopropane C3H6 and cyclobutane C4H8. This is why these compounds are highly strained 

ones. They have maximal superfluous enthalpy (formation heat) among cycloalkanes: 37.674  

and 26.377 kJ/mol, respectively; for comparison, cyclohexane has 0 kJ/mol.  
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Fig. 4. The structure of bindings of carbon frames in some typical hydrocarbon compounds 

based on the shell-nodal atomic model.  

 

A scheme of overlapping of the nodes of two carbon atoms resulted in the formation of 

the C2 molecule is shown in Fig. 5. Two-multiple overlapping of atomic nodes leads to the 

nodes contained every by the four hydrogen atoms per node. Just the same number it has the 

helium atom He4

2
 belonging to one of the balanced atomic structures (along with neon and 

argon). For this reason, we can suppose that the latter fact (coupling) provides, apparently, 

the more stable thermodynamic state of C2 with respect to C, i.e., to the state that has an 

individual carbon atom.  

An overlapping occurs with both carbon atoms and carbon dimers (see Fig. 6). In 

gaseous carbon compounds (as for example, in ethane C2H6, Fig. 6a, see also Fig. 4), the 

single carbon atoms are overlapped as a rule. Dense carbon compounds, as for example 

benzene C6H6 (Fig. 6c), are formed from carbon dimers C2. And such compounds, as for 

example cyclohexane C6H10 and cyclooctadiene C8H12 (see Fig. 4), are composed both from 

single carbon atoms, C, and carbon dimers, C2; their positions are indicated in Fig. 4. 
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Fig. 5. Formation of the carbon diatomic molecule C2: overlapping (“confluence”) of all 

approaching nodes (and toroidal rings not shown here) of two carbon atoms in the unit whole. 

(A symbolic image of C2 does not differ from the symbolical designation of a single C atom 

drawn in Fig. 1). 

 

 

 

Fig. 6. A schematic view showing the two-multiple overlapping of the potential polar-

azimuthal nodes at the formation of the C–C bonds in ethane C2H6 (a) and a fragment of the 

three-multiple overlapping of the nodes realized in cyclohexane C6H12 (b); the case of two-

multiple overlapping of the nodes of three carbon dimmer molecules C2 along the closed 

circle (c) (the formation of C2C2 bonds in benzene C6H6). 

 

The direction of interatomic bonds between the nodal hydrogen atoms of interacting 

carbon atoms in hydrocarbon compounds and the character of overlapping of their potential 

polar-azimuthal nodes for the case of single carbon atoms is demonstrated in Fig. 6a (two-

multiple overlapping) and Fig. 6b (three-multiple overlapping); and for the case of two-

multiple overlapping of interacting carbon dimmers  in Fig. 6c. 

A fragment of three-multiple overlapping of single carbon atoms realized in cyclohexane 

C6H12 (depicted in Fig. 4) is shown in Fig. 6b. In this case, one internal node of each of the 6 

carbon atoms is overlapped with two external nodes belonging to two nearby carbon atoms. 

For example, as shown in Fig. 6b, the internal node 2 (of the 2
nd

 atom) is overlapped with the 
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external node 4 (of the 3
rd

 atom) and with the external node 6 (of the 1
st
 atom), and so on 

around the circle. 

Two-multiple overlapping of carbon dimers resulted in a closed hexagonal ring with six 

vertices-nodes is characteristic feature for the carbon frame of the benzene molecule (Fig. 

6c). In this case, each internal node (1 and 2) of each of three dimers is overlapped with one 

external node belonging to a nearby dimer (as, e.g., 1 with 5, or 2 with 4, etc., as shown in the 

figure).  

A three-multiple overlapping of the nodes of carbon dimmers, C2, is realized at the 

formation of carbon crystals, we will show this below. Note that the three-multiple 

overlapping of the nodes of carbon dimers corresponds to the six-multiple overlapping of the 

nodes of carbon atoms (contained two coupled hydrogen atoms per node). 

From the figures presented above it follows that, at the formation of compounds, the 

internal nodes, 1 and 2, of connecting atoms never overlap between themselves. In all cases 

these nodes are overlapped only with the nodes belonging to external shells of nearby 

attached atoms, as for example, it is shown in Fig. 6a, where an internal node 2 (or 1) of one 

carbon atom is overlapped with the external node 3 (or 6) of a nearby attaching atom.  

A schematic view of self-binding (assembling) of two-dimensional carbon compounds 

such as graphene and benzene is presented in Fig. 7. If one considers that the lattice 

parameters accepted for them, including graphite, are true, these compounds are formed on 

the basis of carbon dimmers C2. 

Nature uses the method of self-assembly, self-organization that resulted in complexity of 

nature. The structure of crystals is strongly deterministic. In particular, characteristic feature 

of graphene, related to the two-dimensional crystals, is the fact that all its constituent carbon 

dimer molecules, C2, are arranged in such a way that all their polar potential-kinetic (axial, 

empty in 
12

C) nodes form the straight continuous parallel chains along a crystallographic 

direction coincident with directions of all joined Z-axes of linked dimers. It means that 

graphene is the crystallographically and, hence, physically anisotropic crystal. Apparently, 

owing to such a structure, presented in Fig. 7, graphene possesses unusual physical and 

chemical properties observable experimentally [9]. 

A carbon frame of the benzene molecule, C6H6, has the form of a flat hexagonal ring, 

which is closed without a strain. Its formation from carbon dimmers C2 and the resulting 

structure are demonstrated in Fig. 7. An ideal conjunction of all bonds conditions a high 

stability of benzene rings. It is well-known that the benzene molecule behaves as a closed 

superconductor. Apparently, this feature occurs due to the junction around its center of three 

chains of empty polar potential-kinetic nodes which serve as the specific channels for motion 

of charges without resistance.  
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Thus, unique physical properties of graphene and benzene molecules are determined, 

apparently, by the nodal structure formed in result of the characteristic internodal bindings of 

interacting dimers as shown schematically in Fig. 7. 

 

.  

Fig. 7. A schematic view of self-binding (assembling) of two-dimensional carbon 

compounds. 
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We see that the structural features of carbon compounds, which we have already 

considered, are naturally and logically explained in the framework of shell-nodal atomic 

model originated from the solutions of the wave equation (1). 

 

3. Graphite and fullerenes 

Graphite is a modification of carbon crystallized in the laminated hexagonal structure. A 

unit cell of graphite consists of three layers (Fig. 8a). The atoms of carbon on the top layer 

and bottom layer are at the same lateral positions. The middle layer is shifted relative to the 

top and bottom layers.  

 

 

Fig. 8. An elementary cell of graphite (a); the structure of bindings in a layer of graphite 

(called graphene) (b).  

 

We will follow the shell-nodal pattern of the carbon atom expressed graphically by the 

symbol  (Fig. 1). The same designation is applied to the carbon molecule C2 (see Fig. 5). At 

present we cannot say what kind of carbon is responsible for the formation of graphite, 

atomic, C, or molecular, C2. There are a few objective reasons for this. In particular, there are 

suppositions that the C2 radical is responsible for the formation of graphite [10]. Moreover, it 

was found experimentally that the carbon dimer C2 is in fact the major observable product of 

C60 fragmentation. It is stated that being a very effective growth species, C2 can rapidly 

incorporate into the diamond lattice leading to high-film growth rates [11].  

Our calculations of lattice parameters, the results of which are presented in Fig. 8, call the 

question: what are elementary “bricks” in graphite, C or C2? The correct answer to this 

question is possible to obtain only after additional research for excluding any doubts, 

including the uncertainty noted above. 
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Following the shell-nodal atomic model and assuming that the lattice constants of 

crystals accepted in modern physics are precise and congruent to reality, we should conclude 

that an elementary “building block” in carbon crystals, including graphite, is the diatomic 

molecule of carbon, C2. However, the validity of this statement calls the doubt because the 

accepted lattice parameters were obtained by the existed method of their evaluation, which 

takes into account the quantum-mechanical nuclear (mono-centre) model of the atoms. The 

latter differs essentially from the shell-nodal (multi-centre) atomic model.  

Under accepted designations of C and C2, hexagonal layers of graphite have the structure 

shown in Fig. 8. The overlapping of the nodes of external nucleon shells of carbon atoms (or 

carbon dimmers) is realized orderly along the strong bindings existed between internal and 

external nodes of each of the nearby carbon atoms (or carbon dimers). In this figure, lattice 

constants of graphite indicated in brackets correspond to imaginary lattice parameters if one 

accounts that the crystal lattice is formed from the single carbon atoms, C. 

When we consider C2-based structure of graphite, we have six-multiple overlapped 

atomic nodes (except of boundary nodes) with 12 overlapped hydrogen atoms in each nodal 

point of the crystal formed, thus, from the nodes belonging to three linked carbon dimers. 

Now let the structure presented in Fig. 8 is formed from the single carbon atoms, C. In 

this case it takes place the three-multiple overlapping of all nodes of all bound carbon atoms, 

i.e., we deal with overlapping of each internal node of an atom with external nodes of nearby 

atoms (excepting boundary atoms where the two-multiple overlapping of external nodes 

occurs, see Fig. 9).  

 

 

Fig. 9. Two- and three-multiple overlapping of the nodes characteristic for linked carbon 

dimmers C2 in graphene  the one-atom-thick layer of graphite.  

 

It means that every (except boundary) nodal point of the crystal (which is attributed in X-

ray structural analysis to an atomic node), where it takes place overlapping the nodes, belongs 

to three individual carbon atoms, C12

6 , as depicted in Fig. 9. Each of the six nodes of the 

carbon atom contains two coupled hydrogen atoms; hence, in this case each nodal point of the 
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crystal is the place of overlapping the 6 hydrogen atoms, but not 12 as it take place in the case 

of overlapping the carbon dimers.  

Thus, taking into account the above reasoning on the C-based structure of graphite, we 

should distinguish among the nodal point representing in shell-nodal atomic model the three-

multiple overlapped atomic nodes (with the 6 overlapped hydrogen atoms), belonging to 

three different carbon atoms C, and the nodal point representing in the standard quantum 

mechanical (nuclear) atomic model one carbon atom C holding 12 nucleons (hydrogen 

atoms) localized, as is believed, in its nucleus.  

At present, after the definite progress in obtaining in laboratory conditions of one-atom-

thick layers of graphene [9] and developing the corresponding technologies for manipulation 

with nanoscale objects such as graphene, the latter has became intensively studied worldwide.  

The two types of two-multiple overlapping are realized in graphene on its characteristic 

edges only, which are called, respectively, zigzag- and armchair-like edges. Unsaturated two-

multiple overlapped external nodes of carbon atoms C (or carbon dimers C2) on these edges, 

especially zigzag-like edges, must have unusual physical and chemical properties, i.e., must 

behave  similarly to chemical radicals. Actually, as follows from the experiments, zigzag-like 

edges of graphene nanoribbons have unique electronic state and chemical reactivity that 

distinguishes them, in properties, from the basic part of graphene with saturated bonds. 

An average density of graphite is 326.2 cmg . At the above density and three-multiple 

overlapping of the nodes of single carbon atoms, lattice constants of graphite must have the 

following values: nma 1956.0  and nmc 5327.0  (shown in Fig. 8 in brackets). An 

average length of the CC bonds corresponding to these parameters is equal to nm111.0  and 

nm115.0 .  

However, the presented above values do not coincide with the officially accepted lattice 

parameters for graphite shown in Fig. 8 without brackets: nma 2464.0  and nmc 6711.0 . 

The CC bond lengths, corresponding to the latter values, are equal to nm140.0  and 

nm145.0 . These data completely coincide with the theoretical data calculated for the case 

when the crystal lattice is formed with use of C2 molecules, as the elementary basic units, 

having shell-nodal atomic structure. 

Thus, the complete coincidence of calculated parameters with the table (accepted) values 

is achieved if we will take into account the previous coupling of individual carbon atoms 

between themselves leading to the formation at first of diatomic molecules of carbon C2. And 

only then just these molecules take part, as basic elementary units, in the formation of the 

crystals. In this case we have the six-multiple overlapping of the nodes resulted in the 12 

overlapped hydrogen atoms per nodal point in the crystal. We arrive, thus, at the coincidence 

of the aforementioned parameters with the accepted values. It is a quite real case because the 

coupling (resulted, e.g., in H2, N2, O2, etc.) is the natural property of matter at all levels. 
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Remember, the coupling of hydrogen atoms, constituents of atoms, occurs as well at the 

subatomic level inside intra-atomic nodes.  

Overlapping the nodes of two carbon atoms resulted in the formation of the C2 molecule, 

shown in Fig. 5, apparently provides the more stable thermodynamic state inherent in the 

diatomic systems, to which belongs the carbon dimer molecule, with respect to the state that 

have the single atoms.  

Now let us turn to the next case of bindings in graphite and other carbon compounds, 

which is also noteworthy. The lattice constants of graphite shown in brackets in Fig. 8 can 

prove to be verisimilar because of the following highly plausible situation. The existing X-ray 

and neutron scattering analysis (along with others methods) of crystals and molecules is not 

so simple matter in spite of using the modern computers and perfect techniques. The gauging 

of diffraction images takes into account the atomic model, officially accepted in physics, and 

the density of substance known from the experiment.  

The modern solid-state theory based on the QM atomic model identifies each nodal point 

in a crystal lattice (or a molecule) with one atom, which is regarded as the only center of 

scattering of incident particles or waves in the atom. Therefore, investigators regard the 

position of every peak of electron density, in X-ray crystallography analysis when 

determining lattice parameters, as relating to the position in a crystal of a definite node 

identified to a single atom [12].  

A precise calculation of atomic positions and lengths of interatomic bonds uses the 

iterative method. The last is based on comparison and fitting of measured and calculated 

(proceeding from the accepted atomic model) intensity of reflected beam so as long as will 

not be achieved an adequate correspondence of two sets of the values.  

However, if only the X-ray analysis will be based on usage of shell-nodal (i.e., multi-

center or molecule-like) atomic model, the gauging could be different, depending on the 

multiplicity of overlapping of atomic nodes belonging to various atoms. It means that the 

three-multiple overlapping of the nodes of three carbon atoms, just as presented in Fig. 8, can 

be also real. However, we have above noticed that if lattice constants of crystals accepted in 

physics are precise and congruent to reality then an elementary “building block” of graphite 

is the C2 diatomic molecule, but not the carbon atom C.  

The schematic images of the formation of carbon compounds presented here in all figures 

show that the interatomic (intermolecular) bindings in graphite, and hence in graphene, are 

realized along the bonds between the nodes belonging to the external shell and the nodes of 

the nearby internal shell of each atom. Every hexagonal circle of nodal points in the two-

dimensional crystal having the 4 double bindings is surrounded with the 6 similar hexagonal 

circles. We see also that single bindings between the 1
st
 and 2

nd
 nodes of internal shells 

(responding to 1,1  ml ; see Fig. 6) nowhere overlap.  
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As the consequence of the specific shell-nodal structure of the constituent carbon atoms, 

the characteristic feature of the formed graphene is its crystallographic anisotropy. The polar 

nodes on Z-axes of all bound elementary carbon formations (C2) form the straight parallel 

continuous chains of these nodes. Their direction is perpendicular to a line of the bonds 

between the 1
st
 and 2

nd
 internal nodes (see Fig. 6 and 9). 

In order to verify the above described peculiarities of nodal bindings in carbon 

compounds, similar those which was found in graphite, it is interesting to consider the 

structure of other carbon compounds. Let us turn now to the structure of fullerenes 

considering them in the light of the shell-nodal atomic model as well (Fig. 10).  

 

 

Fig. 10. An unfolded structure of buckminsterfullerene C60 (a); a fragment showing the 

overlapping of the nodes belonging to 5 spherical molecules C2 resulted in three-multiple 

overlapping of their nodes in two vertices (nodal points) (b).  

Fullerenes are regarded as a molecular form of a pure carbon (a kind of microclusters) 

representing a high symmetrical structure hollow inside. They are formed by the regular 

polygons of strained atomic bindings because of their bending under the formation of cage-

like structure of carbon atoms, characteristic for fullerenes.  

The most known among fullerenes is C60 molecule (called buckminsterfullerene), which 

is well detected by mass-spectrograph. The complicated structural analysis has led to the 
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conclusion that this molecule has 60 vertices, and their bindings form 20 hexagons and 12 

pentagons. Such a structure reminds in form a football pattern (Fig. 10).  

If one follows the shell-nodal atomic model then we should accept that elementary 

“building bricks” of the C60 molecule must be carbon dimers C2, but not carbon atoms C. 

The spherical closed pentagonal/hexagonal monomolecular shell has the rotational 

symmetry of order 5 forbidden in crystallographic space of plane symmetry group and 

highest possible icosahedral point-group symmetry [13].  

The conclusion about the structure of buckminsterfullerene, accepted in physics, rests on 

the concept of quantum mechanical (mono-center) atomic model, according to which one 

node of a crystal lattice corresponds to one atom containing all its nucleons in a nucleus (12 

nucleons in the case of carbon).  

Let us suppose that the aforementioned spherical structure with 20 hexagons and 12 

pentagons is realized on the basis of shell-nodal atomic model with use of 30 carbon atoms, 

but not carbon molecules C2, in the capacity of elementary “bricks” (they are designated by 

the same symbol   , see Fig. 1 and 5). In this case, the above structure of 60 vertices, 

depicted in Fig. 10 in the unfolded form, will be characterized by the three-multiple 

overlapping of all the nodes of the atoms similarly as it is shown in the case of the graphene 

structure. As a result, we will arrive at the hypothetical C30 molecule, because only 30 carbon 

atoms are needed for the formation of 60 such vertices (nodal points). However, this case 

contradicts to the mass-spectrographic data which uniquely justify in favor of C60 molecule. 

The only six-multiple overlapping the nodes belonging to 6 carbon atoms (having the 

shell-nodal structure) leads to the formation of C60 molecule; in every of 60 vertices-nodes of 

buckminsterfullerene. This is realized on the basis of coupled carbon atoms, i.e. dimers C2, 

participating as elementary structural units at the formation of C60, just like it takes place, 

apparently, at the formation of all crystal structures on the basis of carbon, including graphite 

considered above. Thus, the symbol  in Fig. 10 represents two coupled carbon atoms, the 

carbon dimer C2. Just then we have the right to state that the above structure, ascribed to C60 

molecule, really belongs to the latter. The length of “single” bindings in such C60 molecule is 

cm81045.1  , “double” bindings – cm81040.1  , as in graphite in the same case formed 

from the coupled carbon atoms. 

Assuming that the case of three-multiple overlapping the nodes belonging to carbon 

atoms, but not carbon dimer molecules, is real then we should recognize that the molecule 

C60 called buckminsterfullerene has actually 120 vertices and some other cage-like structure 

than usually accepted as shown in Fig. 10. This is very likely because of possible errors at an 

extremely complicated procedure of deciphering the intricate diffraction images of C60 

molecule (as, generally, all fullerenes), and mainly due to the aforementioned gauging, 

accomplished with taking into account the nuclear (mono-center) structure of atoms. Thus, at 

the current stage of the development of atomic physics, we cannot exclude completely that 
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the structure presented in Fig. 10 with 60 vertices is an image of the C30 molecule, but not 

C60.  

The overlapping of atomic shells at the formation of molecular and crystal carbon 

structures occurs along the directions of bindings between the nodes belonging to two shells, 

external and nearest internal, both for graphite and fullerenes. Internal bindings of the internal 

shell of carbon atoms (between the nodes 1 and 2, corresponding to l = 1 and 1m  (Fig. 6) 

overlap only once at the coupling of carbon atoms resulted in the formation of carbon dimers 

(see Fig. 5). 

 

4. The shell-nodal structure of diamond 

All variety of the results which follows from the solutions of the wave equation (1), as 

applied to the carbon space, is not limited by the already considered examples. We will not 

analyze all other here.  However, it makes sense to analyze now the peculiarity of forming an 

elementary tetrahedral structure inherent in diamond crystals taking into account the shell-

nodal structure of constituent basic units, which can be (as in the case of hexagonal graphite) 

either individual carbon atoms C or carbon dimer molecules C2.  

Diamond is a modification of carbon crystallized in a face-centered cube. The 

coordination number of diamond is 4. Therefore the structure of diamond is more friable in 

comparison with cubic structures characteristic for metals. Diamond can be artificially 

obtained from graphite under C016001300  temperature and GPa0.85.4    pressure.  

 

Fig. 11. The octahedral structure of the carbon atom ( 2/ ). 

 

If an internal shell of the carbon atom, containing two nodes (numbered as 1 and 2), will 

be rotated at right angle relative to the plane of outer four nodes, we obtain the carbon atom 

in the octahedral form (Fig. 11). The solutions of the wave equation of space determining the 

principal potential polar-azimuthal nodes in spherical polar coordinates, 

)cos()()( ,   mRC mllp , allow such a position of the internal nodes (1 and 2) by 

specifying the corresponding initial phase. The value of the azimuth angle entered in the 
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above wave function, corresponding to the solution related to the internal shell, originally 

taken as zero, must be equal in this case to  

We can also set another value of , for example, . Most likely, as follows from 

analyzing the possible variants of bindings leading to the tetrahedral structure, that the latter 

value of  for the solution related to the internal shell is realized in diamond crystals. Recall 

that we base in this analysis on the shell-nodal structure of the carbon atom.  

Let us show now the scheme of forming the tetrahedral bindings for the above case. 

The disposition of all polar-azimuth nodes in one plane (inherent in the carbon atom 

under normal conditions, see Fig. 12a, and keeping in graphite) does not keep under high 

pressure and temperature. As a result the one-planar disposition of all atomic nodes 

characteristic for hexagonal layers of graphite is broken.  

 

 

Fig. 12. A plane structure of the carbon atom (a) (and molecule C2 as well); a shifted (turned) 

position of an internal shell with the nodes 1 and 2 around the z-axis by the phase angle 

4/  (b); the bindings (marked by broken lines) (c) between the shifted internal nodes 1 

and 2, belonging to different carbon dimmers, resulted in a face-centered cubic structure of 

diamond. 

 

The planes of the location of the 1
st
 and 2

nd
 internal polar-azimuth nodes (which coincide 

in hexagonal graphite with the plane of the location of all external nodes, 3  6) can be turned 

around the Z-axes in all basic units (C or C2) by the angle of about 4/ ; naturally, together 

with the internal shells to which these nodes belong. The given turns are carried out, thus, 

with respect to the plane of the disposition of the rest external polar-azimuth nodes belonging 

to the outer shells as shown in Fig. 12b for an individual carbon atom (or an dimer). The 

relevant particular solution of the wave equation (1) admits the resulting structure by setting 

the corresponding initial phase, i.e., taking the value of the azimuthal angle to be equal to 

=/4. 
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As a result the directions of all internodal bonds, initially lying in the same plane, are 

changed (see Fig. 12b). The plane hexagonal structure of graphite layers is transformed into 

the wavy hexagonal structure, which enables bindings between them in the volume face-

centered cubic structure. The direct interaction with the formation of bindings between the 1
st
 

and 2
nd

 nodes, drawn by broken lines in Fig 12c, of different coupled carbon atoms (if 

bindings are realized with participation of carbon dimers), belonging to nearby layers, is 

realized in this case.  

We see that hexagonal disposition of the nodal points is characteristic for both crystal 

forms, for graphite and diamond. However, if hexagonal circles are planar in graphite, they 

are wavy in diamond (Fig. 13b,c). The bindings between the deformed (wavy) neighboring 

hexagonal layers, leading to the formation of the tetrahedral diamond structure, are shown by 

dashed lines in Fig. 13c.  

 

 

Fig. 13. The hexagonal-wavy structure of crystallographic planes in diamond (a); a 

hexagonal-wavy circle built from 3 carbon units (carbon atoms, C, or dimmers, C2) (b); the 

bindings (marked by dashed lines) between hexagonal-wavy layers resulted in the face-

centered cubic structure (c); an elementary cell of diamond (d).  

Thus, the specific hexagonal structure originated from the specific topology of the 

disposition of nodes in the carbon atom, pronounced in graphite, keeps in diamond in general 

terms and distinctly in its crystallographic planes (Fig.13). The next similarity relates to the 

same pattern and multiplicity of overlapping the nodes in diamond realized just as it occurs in 

graphite. Peculiarities of overlapping in graphite were considered in a preceding section. 

Therefore, because they have the same character in diamond, we will not explain this again.  
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Note, however, that the lattice parameters of diamond presented in brackets in Fig. 13 

(just like the corresponding parameters of graphite presented in Fig. 8) correspond to a 

hypothetical case of the participation, presumably, the individual carbon atoms, as elementary 

basic units when forming the diamond lattice. A three-multiple overlapping of atomic nodes, 

containing each the coupled hydrogen atoms and belonging to different carbon atoms, takes 

place in nodal points of the crystal in this case.   

The crystallographic parameters of diamond crystals indicated without brackets in Fig. 

13d coincide in value with the data accepted in physics. They correspond to the case of three-

multiple overlapping the neighboring nodes of carbon dimer molecules C2.  

Repeat again in conclusion that if only the structural analysis would be based on the shell-

nodal (i.e., multi-center or molecule-like) atomic model, the gauging would be different; 

depending on the condition of what is accepted in the capacity of elementary “building 

blocks” for the formation of corresponding crystal lattices – individual carbon atoms or 

carbon dimer molecules, C or C2.  

At present assuming, as in the case of graphite, that the lattice constants of crystals 

accepted in physics are precise and congruent to reality, we must accept that elementary 

“building blocks” in diamond (as, generally, in all carbon crystals) are diatomic molecules of 

carbon, C2. They are considered here as two carbon atoms coupled in such a way that their 

corresponding nodes pairwise completely mutually overlap as shown in Fig. 5. 

5. Conclusion 

It stands to reason that the “genetic code” of structural variety in Nature is, obviously, 

“hidden” inside the atoms. A comprehensive analysis of the particular solutions of the wave 

equation (1) has revealed the structure of this “code”. An atom, as the wave formation, 

represents a system of spherical shells with discrete points-nodes of wave space. From all the 

nodes and antinodes, the principal nodes (potential polar-azimuthal) of stable atoms are filled 

with coupled hydrogen atoms, i.e., an atom represents a molecular formation from the 

hydrogen atoms. In view of this, the hydrogen atoms only (proton, neutron and protium, 
1
H) 

are the atoms in the true sense of the word. Discovered in result of the analysis, the internal 

shell-nodal structure of the atoms is specific for each atom. Such a structure represents the 

definite molecular formation which defines all individual properties of an atom, atomic 

isotopes and molecules formed from the atoms (figuratively speaking, like the structure of a 

DNA molecule that contains the genetic information for a living organism). 

Thus, from solutions of the ordinary wave equation (1) in spherical polar coordinates it 

follows that the atoms (except the hydrogen atoms) represent by themselves quasi-spherical 

molecules. They are reminiscent of R.J. Haüy’s elementary molecules [14]. Their internal 

shell-nodal structure uniquely determines the structure of matter at the molecular level.  
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The hydrogen atoms  basic constituents of all other (molecule-like) atoms prevail 

over electrons more than by three orders both in value of mass and exchange charges (at both 

levels, atomic and gravitational). Therefore, it was natural to assume that the role of the 

hydrogen atoms localized in atomic nodes is determinative at the formation of interatomic 

bonds. If so, then the nodal hydrogen atoms must be responsible for forming the certain 

spatial structure of a molecule. Actually, the structure of molecules and crystals depends on 

the shell-nodal structure of external wave shells of interacting atoms. The mechanism of 

chemical bindings, where the hydrogen atoms play the defining role, is quite natural; it is in 

compliance with logic and common sense.  

Electrons are the particles of the second order with respect to nucleons in hierarchy of 

the “elementary” particles of the Universe. Naturally, therefore, that they play the secondary 

role in interatomic exchange (interaction). Really, in accordance with the shell-nodal atomic 

model, set forth first in 1996 [7], electrons define only the strength (we will show this 

further), but not directions of chemical bonds, and, hence, they do not exert determining 

influence on the form of molecules and crystals, as it is considered in modern physics and 

chemistry. 

 The chemical bindings are realized in interatomic space along the characteristic 

directions defined by the topology of internodal (strong) bindings inherent in each of 

interacting atoms; more precisely, by the spatial disposition of the (strong) bonds between the 

intra-atomic nodes belonging to two external shells in each of the interacting atoms. The 

latter is clearly seen in all Figures above, at all of the depicted images for widely known 

carbon compounds presented in this Lecture. Thus, the main role in the formation of 

molecules and crystals, built on the basis of the molecule-like atoms, belongs to the nodal 

hydrogen atoms. 

Assuming that the data on the lattice constants accepted in physics are precise and 

congruent to reality, we must conclude that an elementary “building block” of graphite (and, 

hence, graphene, fullerene and some other carbon compounds like benzene, etc.) is the C2 

diatomic molecule. In this case, however, we found ourselves face to face with the following 

arisen problem required its resolution.  

The matter is that presently for the precise calculation of atomic positions and lengths of 

interatomic bonds it is used the iterative method. The latter is based on comparison and 

fitting of the measured and calculated intensity of a reflected beam so as long as will not be 

achieved an adequate correspondence of two sets of the values. And what is ultimately 

important therewith in principle, it is the fact that at calculating the intensity of a reflecting 

beam each node of a crystal or a molecule, which reflects the beam, is identified with a single 

atom. That is, the nuclear model of the atoms is taken into account at the aforesaid 

calculations. The resulting calculated values are subjected further to the subsequent fitting 

with the measured intensity by the iterative method. Thus, the nuclear atomic model is used 
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as the required principle (as absolute condition) in creating the corresponding computer 

programs for the automatic processing of the measurement data to determine the lattice 

parameters.  

It is obvious, if only the X-ray analysis would be carried out taking into account the shell-

nodal structure of the atoms, i.e., the multi-center molecule-like atomic model, the gauging 

would have been different. It will depend on the different multiplicity of overlapping of 

atomic nodes belonging to the interacting units: either the single atoms C or diatomic 

molecules C2, realized at the formation of different carbon compounds, molecules and 

crystals.  

This means that the standard lattice parameters, including parameters of graphite and 

diamond presented without brackets, respectively, in Figures 8 and 13, should be 

reconsidered. In view of the shell-nodal atomic model, the above parameters relate to the 

crystals formed from the diatomic molecules of carbon, C2, whereas in view of nuclear 

atomic model they are formed from carbon atoms, C. Accordingly, one needs to recalculate 

the intensity of a reflected beam (used in the iterative method) with taking into account the 

shell-nodal (multi-center) atomic model and considering therewith each of the two variants of 

bindings in the crystals realized with either elementary basic units, C or C2.  

In other words, we should know, which of two possible versions of the three-multiple 

overlapping of the nodes takes place in reality: with participation of carbon atoms C or 

diatomic molecules of carbon C2. In general, one should verify also the lattice parameters of 

the substances used as the standard for comparison to check the truthfulness of lattice 

parameters defined for unknown earlier substances by the iterative method. 

Thus, we are interested in revealing all peculiarities, related to the shell-nodal structure of 

the atoms and their compounds, which were denoted in this Lecture. Any results of the 

inevitable verification of lattice constants of the crystals, including that above discussed, will 

be ultimately informative. They will favor the more profound insight into all peculiarities of 

the Wave Model, on the whole, which is developed to replace the Standard Model 

dominating currently in physics. 
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 Lecture 7  

 

Specific Features of Graphene 
 

 

1. Introduction 

We believe that it is not superfluous to recall and emphasize at the beginning the fact that 

discovery of the shell-nodal structure of atoms was not a fruit of an occasional imagination or 

a conscious fiction of the authors. It was a result of profound analysis of the well-known in 

mathematics particular solutions of the wave equation. The discovery has crucial importance 

for the entire foundation of physics because it changes our common view on the structure of 

atoms and molecules. In particular, the shell-nodal atomic model enabled to understand the 

true cause of unusual properties observed in one of the crystalline allotropes of carbon  

graphene. 

Graphene is a carbon-based two-dimensional one-atom thickness crystal (a gigant plane 

molecule) that exhibits unique physical properties. Its supposed application in electronic 

industry will enable increasing the density packing for electronic components in 

nanoelectronic devices acompanied with reducing the power consumption per component. 

The noted above application open a wide perspective for use of graphene in nanotechnology, 

to produce a new generation of electronic devices of nano and molecular sizes, the more so 

that modern Si-based technology is approaching its natural limits. Specific mechanical and 

chemical properties of graphene allow its use also in other industries. 

We verified from different sides and by different ways the main discoveries made in 

result of the aforementioned analysis, which were brought up for discussions in these 

Lectures. We mean discoveries of the dynamic wave nature of elementary particles and wave 

shell-nodal structure of the atoms, unknown earlier new fundamental parameters (constants) 

and new phenomena, and other findings related with the new basic notions of dialectical 

physics. We consider the Wave Model developing in the framework of the dialectical 

approach as an alternative to the Standard Model of modern physics.  

The aforesaid verifications concern thus, generally, the wave structure and behavior of 

matter at the atomic and subatomic levels. The obtained results completely confirm 

correctness and validity of the valuable information disclosed in the solutions of the wave 

equation, i.e., reality of the made discoveries.  
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A single layer of graphite, called graphene, having a two dimensional hexagonal lattice 

gave us, fortunately, because of the one-atom thickness, a new unique possibility for the 

direct verification of reality the wave shell-nodal structure of the atoms. By this way we have 

examined once more veracity of the fundamental theoretical concept of dialectical physics [1] 

postulating the wave nature of the Universe and, hence, the wave nature of matter. 

In this Lecture we will focus on the description of the structure of graphene and its 

conductivity anisotropy first predicted by the author, which after that indeed was found in 

graphene. Conditioned by peculiarity of the wave shell-nodal structure, anisotropic behavior 

is a natural phenomenon in graphene. You will see this.  

So let us proceed now to the consideration of this matter. 

 

2. The shell-nodal structure of graphene 

A schematic plan view of a graphene sheet is shown in Fig. 1. It demonstrates bindings 

between carbon constituent units and an invisible (by electron microscopes) part of the 

graphene structure related to polar nodes (empty in 
12

C). These nodes form the so-called 

“ballistic channels” along the Z-axis. There are also shown three types of edges characteristic 

for the two-dimensional crystal lattice of graphene.  

The fact that we do not see the polar nodes does not quite mean that these nodes do not 

exist. For example, we do not see wind, but it exists. We know about it from the effects 

which wind causes. About the polar nodes we have learned directly from the corresponding 

solutions of the wave equation, and their existence was confirmed further by different ways. 

In particular, forced filling these nodes (which are the nodes of rest and motion 

simultaneously, i.e., they are potential-kinetic) with hydrogen atoms causes appearing the 

short-lived atomic isotopes (considered already in L.5).  

The unique properties observed in graphene experimentally are also, mainly, caused by 

an existence of such nodes. Conditioned by the polar nodes characteristic for the shell-nodal 

structure of the atoms, these properties of graphene are explained now, logically and 

noncontradictory, without fictional hypotheses. The latter became, unfortunately, 

commonplace in physics.  

The form of edges in graphene differs essentially depending on their orientation in a 

crystal with respect to the united Z-axes of the orderly bound carbon atoms that is clearly 

seen in Fig. 1. 

Due to an ideal conjugation of all nodes and internodal bonds, the total energy of all 

bonds in an ideal lattice of graphene is minimal; such is the nature of the formation of all 

compounds. So in the event of a deviation from the aforementioned regularity, occurred for 

some reason, a loss of (deviation from) thermodynamic stability takes place that results in 

appearance of the metastable defects.  
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Fig. 1. The shell-nodal structure of graphene and its characteristic edges. 
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Typical metastable defects inherent in graphene are two pairs of five- and seven-member 

rings of carbon nodes (pentagon-heptagon (5-7) defects) called Stone-Wales (SW) defects.  

The main stages of their formation are schematically shown in Fig. 2a-d. These defects 

spontaneously appear in a hexagonal graphene lattice and remain stable for a time. In an 

electron microscopy conditions, under influence of heating by an electron beam, the defects 

lifetime is about several or tens of seconds depending on electron energy. 

It should be noted that all nodes of the basic constituent units (carbon atoms C or carbon 

diatomic molecules C2) are in a plane, but each of the carbon units, as a whole, has a 

spherical spatial structure with two principal spherical shells, internal and external. The 2 

internal nodes and 4 external nodes belong, respectively, to these shells. 

 

 

Fig. 2. The formation of the pentagon-heptagon (SW) defects in graphene. 

 

Before beginning the consideration of the mechanism responding for the formation of the 

defects, let’s agree to denote the carbon atom C, representing the elementary molecular 

formation of 12 hydrogen atoms, located by 2 in every of 6 principal polar-azimuthal nodes 

by the short abbreviator 6-NEM that means the six-nodal elementary molecule of the 

hydrogen atoms.  
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As was discussed in previous Lecture, at present we cannot say what kind of carbon is 

responsible for the formation of graphite (and, hence, graphene): atomic, C, or molecular, C2. 

Therefore, assuming that the lattice constants of crystals accepted in modern physics are 

precise and congruent to reality, we have concluded that an elementary “building block” of 

carbon crystals is the diatomic molecule of carbon, C2. In view of this, the carbon dimer C2 

having, naturally, the double number of the above constituents of 6NEM, we will denote for 

distinction by the short abbreviator 6-NED that means the six-nodal elementary dimer 

molecule of the hydrogen atoms. 

A process of the formation of the defect is the following. All 6-NED and their nodes 

continuously oscillate around an equilibrium state with amplitude depending on the 

temperature. At room temperature graphene is stable, and Fig. 2a shows schematically an 

unperturbed fragment of its lattice before an appearance there of the defect. A dashed circle 

indicates the disposition of the 6-NED selected for consideration. Under influence of the 

electron beam, of a definite dose and voltage, the temperature of the 6-NED increases and, 

hence, amplitude of oscillations of the selected unit, as the whole, and its nodes also 

increases.  

As was noted in [2], “The maximum energy that can be transformed from an 80 keV 

electron to a carbon atom is 15.6 eV, which is below the threshold for knock-on damage but 

sufficient to form multiple SW defects”. The appeared perturbation results in weakening of 

internodal bonds that can lead to turning of the 6-NED in the plane around the axis passed 

through its center of symmetry perpendicularly to this plane as shown in Fig. 2b.  

Fig. 2c shows a relative position of the 6-NED just after turning at the angle of π/2. All 

internodal bindings in ECNFs are elastic, and deformation (bending) of them in the turned 6-

NED and the surrounded 6-NEDs is resulted in a new configuration of metastable bonds, in 

an appearance of a joined pair of pentagon-heptagon (SW) defects as shown in Fig. 2d. An 

appeared defect is metastable because all bonds newly formed are strained in some extent 

because of bending from thermodynamically equilibrium state. Therefore the above-

described process shown in Fig. 2 is reversible.  

After a relaxation time the defect disappears and by the reverse way returns to the 

unperturbed ideal graphene lattice. A schematic view of dynamics of the SW defect 

appearance shown in Fig. 2d completely agrees with the direct experimental images 

presented in the above-referred article published in Nano Letters [2] (in Figs. 3a-d, herein).  

As noted in the referred article, an explanation of the origin of SW defects “is important for 

basic understanding of this novel material as well as for potential electronic, mechanical, 

and thermal applications”.  

The resulting formation of another complex metastable defect, like shown in Fig. 2, but 

with 4 pairs of five- and seven-member rings of carbon nodes is shown in Fig. 3. The latter 

completely agrees with the direct experimental images of such a kind of the defects shown in 
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[2] (in Figs. 3h,I). Here we see the 3 6-NEDs turned in plane by the different in value angles 

from their equilibrium states so that directions of their Z-axes are essentially changed. Their 

positions are market by the dash circles. 

 

 

Fig. 3. The scheme of bindings at forming the complex metastable defect in graphene. 

 

So an appearance and disappearance of the defects in graphene means that the 6-NEDs 

are mobile being in a continuous oscillatory motion. Their nodes only rebuild their bonds 

with neighboring nodes, so that in this case the 6-NEDs do not escape. A relatively low 

excitation of the graphene crystal structure is needed to stimulate the process of self-

treatment of arisen defects. After relaxation, a graphene lattice returns to an ideal unperturbed 

stable state. 

 

3. Graphene nanoribbons 

Graphene nanoribbons, abbreviated GNRs, are strips of graphene with ultra-thin width 

(<50 nm) (Fig. 4).  

It is usually believed that the electronic states of GNRs largely depend on the edge 

structures (armchair or zigzag). In particular, it is repeated in the literature that graphene 

nanoribbons can have different conductivity character depending on edge character. 

However, such a conclusion is the traditional fallacy of many. In particular, the wording in 

[3] (page 1, “A GNR can be metallic or insulator, depending on its width and two edges”), is 

erroneous concerning both statements: about the “depending” and “insulator”. 

Missunderstanding the phenomenon is due to ignorance the true structure of graphene. 

In accord with the shell-nodal atomic model, the “edge character” is the effect, but not 

the cause of the “different conductivity character”. The properties of graphene and graphene 

nanoribbons, including “different conductivity character”, depend only on the 

crystallographic structure and physical properties of graphene crystal as a whole. 
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The “different conductivity character”, like the “edge character”, depends only on a 

certain orientation of the main crystallographic axis in graphene crystal, including a graphene 

nanoribbon, the Z axis (see Fig. 1). The form of edges is a secondary thing. 

If a nanoribbon is cut out in such a way that the Z axis of the crystal is found to be along 

a nanoribbon, parallel to its lateral edges, then these edges have a zigzag form. If the Z axis is 

perpendicular to lateral edges of nanoribbon, then these edges have an armchair form. If the 

Z axis forms an angle of 60
o
 or 120

o
 with respect to lateral edges, then these edges have a C-

like (or tooth-like) form.  

 

 

Fig. 4. Armchair (a) and zigzag like (b) types of graphene nanoribbons. 

 

Note that the identification of the orientation of the Z axis in a graphene sheet, especially 

because the characteristic edges practically are not clearly seen on SEM images, must be 

provided as the first step before fabrication of electronic devices with required parameters on 

its basis.  

Graphene nanoribbons cut from a graphene sheet with the different orientation of the Z-

axis, on which are empty polar nodes (forming the “ballistic channel” for moving electric 

charges without resistance), with respect to the edges are shown in Fig. 5. 
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Fig. 5. Graphene strips (nanoribbons, GNRs) having the different orientations (A-A) of the Z-

axis (“ballistic channels”) in respect to their edges and different widths. 
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There are four main directions of cutting out the graphene sheets which yield 

nanoribbons with 3 basic types of edges (Fig. 1). The first cutting direction (A-A) is along the 

Z axis (i.e., along the “ballistic channels”); it results in zigzag edge nanoribbons as shown in 

Fig. 4b. The second direction of the cutting out process (B-B), perpendicular to the Z axis, 

yields nanoribbons with characteristic armchair edges (Fig. 4a). The cutting out of 

nanoribbons along the third and fourth crystallographic directions(C-C), symmetrical with 

respect to the Z axis (under the angles of ±60
o
), lead to nanoribbons with tooth-like edges.  

In the case of cutting along the D-D directions (Fig. 1), we can obtain nanoribbons with 

hook-like edges. However, such edges being extremely unstable (because of extremely high 

chemical reactivity of broken free bonds on the edge, on the background of thermal 

vibrations of nodes and internodal bonds) can be spontaneously transformed due to a self-

treatment into a more thermodynamically stable state which have the edges, zigzag- and 

tooth-like. 

 

 

Fig. 6. The main directions of spontaneous etching in graphene (armchair and tooth-like), and 

a desired pattern of etching strictly along “ballistic channels” resulted in zigzag-like edges of 

the etched path. 
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The zigzag-like edge formed along the Z axis is the more stable edge because the nodes 

of the boundary constituent units, 6-ECDs, are double overlapped on the edge. Then, in the 

order of decreasing the stability of edges, we have a tooth-like (or C-like) edge. In this case, 

one node of each of the boundary 6-ECDs is free, counterbalanced. The armchair edge is 

even less stable because of two nodes of each of the boundary 6-ECDs are free, 

counterbalanced. Armchair edges have markedly higher chemical reactivity then tooth-like or 

zigzag edges. 

This is why spontaneous anisotropic etching of single-layer graphene, for example, by 

thermally activated nanoparticles is, mainly, observed strictly along the angles formed by the 

cuts to be either 60
o
 or 120

o
 [4-6]. The directions of supposed spontaneous etching with 

respect to the Z-axes (depicted by the dotted lines) of the orderly bound 6-NEDs in the 

hexagonal lattice of graphene are shown in Fig. 6. 

 

4. Anisotropy of unstrained pristine graphene 

Thus, in accord with the shell-nodal atomic model, graphene is structurally anisotropy 

that follows from the data considered in previous Lectures and clear seen in all presented 

above Figures. Actually, looking at such a structure everyone will say without doubts that 

graphene is anisotropic. The shell-nodal structure of graphene has the two-fold axis of 

rotational symmetry. Hence, the physical properties of graphene must be anisotropic in a 

plane perpendicular to this axis. 

According to modern notions, the hexagonal lattice of graphene, a two dimensional 

hexagonal crystal, has a high order symmetry axis, six fold. The hexagonal structure of 

graphene as it is usually considered in modern physics is presented in Fig. 7. The three 

identical crystallographic directions (1-1, 2-2, and 3-3) and three perpendiculars to them 

(depicted by dashed lines) are drawn here.  

Obviously, looking at this pattern of graphene, everyone can conclude that each of the 

two pairs of the indicated directions, actually, are structurally equitable. Hence, the physical 

properties of graphene must be isotropic in a plane perpendicular to its six-fold axis of 

rotational symmetry, in full agreement with the basic symmetry theory [7]. 

Thus, thanks to graphene we have arrived at the situation when we can verify the validity 

of new concepts on the structure of atoms, and by this way to confirm the conclusion on 

invalidity of modern theoretical notions concerning the structure of matter at the atomic and 

subatomic levels. The first property dependent on the crystallographic anisotropy, which can 

easy verify in graphene, is its electric conductivity.  

An examination of likely conductivity anisotropy in pristine unstrained graphene has 

never been undertaken, and a question about such tests has never been raised among 

researchers. An existence of natural anisotropy of graphene was not only unknown, but even 

is not discussed a possibility itself of this phenomenon, as completely unacceptable, craze. 
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As we have said above, at first glance a talk about an existence of natural conductivity 

anisotropy in graphene seems nonsensical. Looking at the structure shown in Fig. 7, one can 

conclude that all three indicated directions are equitable and electric conductivity of graphene 

measured along these directions must be the same.  

 

Fig. 7. The honeycomb lattice of graphene.  

 

However, according to the shell-nodal structure of the carbon atom, it makes sense. Polar 

potential-kinetic nodes along the Z-axis (empty and, therefore, invisible in structural analysis) 

form together an empty channel allowing the ballistic motion of electric charges in graphene. 

They divide the hexagonal cell formed of potential nodes filled with nucleons (and, hence, 

visible in structural analysis) onto two symmetrical halves. Conductivity along the ballistic 

channel must be higher than in perpendicular direction.  

In this connection it should be noted the following. Graphene flakes (sheets) obtained by 

different ways and, moreover, not being sufficiently isolated from its environment in order to 

be considered as free-standing, have many different kind defects and impurities. 

Consequently, the pure ballistic motion, observed in suspended pristine graphene membranes, 
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is not ideal in some cases (for example, in an attempt to implement the device on such 

graphene) because of scattering of electrons on the defects during their motion. 

The fact that we do not see empty polar nodes forming the ballistic channel does not 

quite mean that these nodes do not exist.  Modern technological means are too imperfect at 

present to observe all peculiarities of the structure of matter at the atomic level. 

The laboratory tests conducted in 2010, have confirmed the existence of conductivity 

anisotropy [8], i.e., the validity of theoretical solutions, and, hence, the correctness of the 

shell-nodal structure of carbon atoms and their specific ordering in the hexagonal lattice as 

shown schematically in all posted figures.  

The method of measurements is clearly seen from a scheme shown in Fig. 8.  

Importantly, the accepted method of the test on conductivity anisotropy allows providing 

an instant control of the quality of electric contacts to the disc-shaped graphene plates, 

directly during measuring the resistances. Hence, this method can be used as the method of 

the tests on applicability of the technology of making the electric contacts on graphene. 

 

 

Fig. 8.  A measurement scheme. 

 

It is obvious that in the case of unstrained pristine graphene monocrystals (having none 

structural defects) and perfectly plated contacts to them, the resistances of the parallel pair of 

identical conductive paths of the same geometrical configuration must be equal in value 

(within error margins). What type of the parallel symmetrical (with respect to a diametrical 

line) pairs of resistances we mean is shown in Fig. 9. Here, as an example, are shown the 

identical parts (in configuration, form) of a graphene plate at measuring the voltage between 

8-5 and 1-4 contacts at the definite constant current flowing through these parts.  
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Fig. 9. A parallel pair of identical conductive paths of the same geometrical configuration. 

 

If relatively large differences (variations) of resistances measured between the two 

symmetrical parallel (identical) parts extending between the indicated contacts will be found 

on structurally perfect graphene plates, the technological flaws of making the contacts on 

graphene plates must be carefully analysed, and the corresponding technology must be 

improved or replaced by another. A typical scanning electron microscope image of the disk-

shaped graphene test sample with 8 contacts is shown in Fig. 10. 

 

 
Fig. 10. The SEM image of the tested graphene device. 

Not controlled variations (fluctuations) of any parameters, which can be caused by 

possible imperfect technological conditions, existed in the laboratory during fabrication of the 

tested samples, naturally can influence on the obtained results. However, as a rule, 

fluctuations are characterised by a chaotic (random) distribution, which superimposes upon 

the investigated dependences (if such really exists), does not changing the latter.  

Pristine unstrained graphene, obtained by a mechanical exfoliation method (the “scotch 

tape technique” on HOPG graphite), was used for the tests. The first tests were carried out on 

three samples of disk-shaped monatomic-thick graphene layers with diameters of 10 m 

(Dev. 4), 7 m (Dev. 2), and 5 m (Dev. 5). The most commonly used substrate for graphene 
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devices is SiO2; it was used also for the fabrication of the test devices. An angular 

dependence of resistance in a plane of the graphene plates was measured.  

A typical polar diagram of conductivity anisotropy, R = f(φ), of the test samples of an 

unstrained pristine graphene layer, monoatomic in thickness, has a characteristic elliptical 

form, as presented in Fig.11 for Dev. 4 measured at two temperatures, 4.2 and 295 K. For all 

first three tested samples [8], the found angular dependence in a plane of graphene 

monolayers is clearly seen on the background of insignificant random variations of absolute 

values of resistances in some directions.  

 

 
Fig. 11. Anisotropy of resistance (R, kOhm) in a plane of a hexagonal graphene monolayer of 

the device Dev. 4, prepared in the form of a circular-shaped plate of the diameter of D=10 

m; a width of contacts is h=580 nm (Vg=24 V; T=4.2 K, I=1 nA; T=295 K, I=100 nA). 

 

In another graphical form, the angular dependence of conductivity R = f(φ) in a plane of 

a graphene monolayer of the graphene device Dev. 4, obtained at the room temperature 
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(T=295 K), is presented in Fig. 12. At this figure it is also shown, in small circles, all 8 

directions of measurements corresponding to each of the obtained values of the resistance R. 

 

 

Fig. 12. The angular dependence of conductivity R = f() in a plane of a graphene monolayer 

of the graphene device Dev. 4: the diameter D=10 m, the width of contacts h=580 nm, 

T=4.2 K, I=1 nA. 

 

As follows from the data obtained, the temperature dependence of graphene conductivity 

occurs like in a metal along the major axis of anisotropy coinciding with the Z-axis. It is the 

A-A direction indicated in Fig. 1. However, we cannot say about metallic conductivity of 

graphene. It is not a suitable term for characterization of the ballistic electron transport found 

in pristine graphene. Graphene conduct electricity better than metals due to the phenomenon 

known as ballistic transport. Ballistic transport occurs when an electron is able to travel 

without being impeded by atoms, molecules, defects or impurities within the transport 

medium. The ballistic motion does not fit within the theory of metallic conductivity, in 

principle. Unlike known metals, graphene exibits superior thermal and electrical 

conductivity, and extraordinary high room temperature carrier mobility. 

A mechanism of the ballistic transport of electrons observed in graphene differs from the 

mechanism responsible for the electron transport in metals. By its nature and due to the 

extremely high magnitude of carrier mobility, the ballistic motion in graphene is, in essence, 

one of the previously unknown forms of high conductivity in solids exibited in a wide 
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temperatures range, including the room temperature. And now we can add to the above 

properties one more property that the ballistic motion is realized at the certain 

crystallographic direction due to graphene anisotropy. Thus, the expression „metallic 

conductivity” is confused with the essense of the conductivity running in graphene.  

In a direction perpendicular to the major axis of anisotropy (the B-B direction indicated 

in Fig. 1) graphene exhibits semiconducting properties. This follows from the character of the 

obtained temperature dependence in this direction. 

The extent of anisotropy, defined as the maximal ratio of resistances measured in 

mutually orthogonal directions between corresponding pairs of contacts, is far beyond the 

possible random deviations and errors for all tested samples. Maximal anisotropy of 84%, at 

the temperature 4.2 K, and 50%, at 295 K, was found in Dev. 4 which has a bigger size 

(diameter 10 m) with respect to other tested samples. 

Resistance R is inverse proportional to conductivity : R~1/. Resistance and, hence, 

conductivity in a plane along the axis of symmetry (identical with the Z-axis), which is the 

minor axis of anisotropy of resistance, does not depend practically on temperature in the 

range from 4.2 K to 295 K. This feature follows from the data of measurement for Dev. 4 at 

both temperatures. In this direction graphene behaves as possessing ballistic charge transport 

properties (referred usually to its “metallic” conductivity properties). An insignificant change 

of resistances with the temperature along the Z-axis, clear distinguishable in Fig. 11, can be 

conditioned by different phenomena, for example, by the influence of the SiO2 substrate and 

environment, etc.  

Conductivity along the major axis of anisotropy of resistance (along transverse diameter, 

perpendicular to the Z-axis) depends on the temperature. This feature is clearly expressed in 

Fig. 11 at both polar diagrams of resistances obtained at the temperatures 4.2 K and 295 K. 

This means that in this direction graphene behaves as having semiconducting properties. 

Graphene anisotropy is confirmed by the fact, that graphene nanotubes, rolled up form of 

graphene, have either conductivity, metallic or semiconducting. It means that the rolling up of 

graphene is realized mainly along two crystallographic directions: along the Z-axis and in the 

perpendicular to it direction. 

The extent of anisotropy, in value, in dependence on the size of tested devices is shown 

graphically In Fig. 13. The observable tendency shows that in devices of the bigger size 

(diameter) with respect to sizes of tested devices, we can wait yet bigger values of anisotropy 

exceeding 2.0.  

Obtained nanotubes have the minimal energy of state. The rolling-up of graphene sheets 

runs spontaneously at the high temperature conditions; it is not yet controlled process. The 

rolling up in other directions, apparently, is thermodynamically unfavourable unstable 
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process, which does not provide the minimal energy of state for the formation of such 

systems (graphene nanotubes). 

 

 
Fig. 13. The extent of anisotropy in tested graphene devices: Dev. 5 (D=5 m), Dev. 2 (D=7 

m), and Dev. 4 (D=10 m). 

 

 

 
Fig. 14. The relation between contact transient resistances of tested graphene devices with 

respect to contact resistance of Dev. 4. 

 

Note, that the tendency shown in Fig. 13 is found on samples which are distinguished not 

only by the size, but also by the different transient resistances of their contacts, at the constant 

current, because of the different width (and hence, areas) of their contacts (see Fig. 14): 

h=580, 400, 290 nm, respectively, in Dev. 4, Dev. 2, and Dev. 5. Therefore, on the basis of 

the limited data obtained, it is impossible to predict precisely enough a variation of the extent 

of anisotropy in dependence on the size of graphene and the area of contacts plated on it. 
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At more optimal conditions of the fabrication of the test devices and optimally fitted 

measurement parameters, the anisotropy can reach the more significant values (undoubtedly 

exceeding 84% found in Dev.4). Especially best results on the degree of anisotropy one can 

wait from future tests on a suspended (free-standing) graphene, where the negative influence 

(affect) of the substrate on physical properties of graphene will be excluded. More ideal will 

be tests accomplished by non-contact methods, for example, optical methods of sample 

analysis, etc.  

Coming back to Fig. 7, we can conclude that the hexagonal lattice of graphene presented 

there reflects only the observable part of its structure. Therefore, we do not see any difference 

between three indicated crystallographic directions (1-1, 2-2, 3-3) and three identical 

directions indicated by dashed lines. 

 

5. Conclusion 

According to the modern notions, it is generally accepted that the hexagonal lattice of 

graphene, a two-dimensional crystal, with the structure shown in Fig. 7, has the high-order 

axis of rotational symmetry, six-fold. Hence, the physical properties of graphene, in 

particular, electrical conductivity, must be isotropic in a plane perpendicular to this axis, in 

full agreement with the basic symmetry theory [7].  

However, in accord with the solutions of the wave equation, atoms have the shell-nodal 

structure; that is, they represent nucleon molecules. They have the different symmetries, 

strictly definite inherent in each individual atom. The specific feature of the carbon atom is 

the fact that its shell-nodal structure has the two-fold axis of rotational symmetry. This 

implies that graphene, consisting of carbon atoms, if they are orderly bound in the lattice in a 

certain manner as shown in Figs. 1 and 6, is, apparently, an anisotropic crystal.The first 

laboratory tests have confirmed this statement.  

There are many evidences in favour of the shell-nodal structure of the atoms found in 

result of the comprehensive analysis of the particular solutions of the Helmholtz wave 

equation [1]. All peculiarities, conditioned by the nodes order just in a two-dimensional 

lattice of graphene, lead to a series of predictions naturally arising as a consequence of the 

aforesaid structure. The conducted tests confirmed, in particular, the prediction of 

conductivity anisotropy caused by an existence and the specific arrangement of invisible 

empty polar nodes relative to the visible nodal points in graphene crystal. Remember that the 

visible crystal nodes are formed in result of overlapping the coupled hydrogen atoms being in 

polar-azimuthal nodes belonging to the interacting (linkable) carbon units, 6-NEDs (six-nodal 

elementary dimer molecules of the hydrogen atoms); they form the visible bone of graphene 

(Fig. 1). Thus, a one-atom thick layer of graphite, having a two-dimensional hexagonal 

lattice, gave the unique chance allowed the direct verification of the reality of such a nodal 

structure. 
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Thus, an existence of the unknown earlier intrinsic property of graphene, the 

conductivity anisotropy, following from the crystallographic anisotropy of its lattice 

predicted theoretically, has been proven experimentally. 

On the basis of shell-nodal atomic model, all specific features of graphene are naturally 

explained, logically and noncontradictory, for example, such properties of graphene 

nanoribbons (GNRs) as: "length and width dependent resistance scaling in GNRs", "the 

averaging hopping length between localized states", why "the charge transport is dominated 

by hopping through localized state", what are "localized states" themselves [9]. The new 

atomic model uncovers also, why “graphene is...an interesting mix of a semiconductor...and 

a metal...” [10]; and so on. We will not analyze the aforementioned statements, caused by 

ignorance of the true structure of graphene, in the framework of this Lecture. You can do it 

easy now yourself. 

Graphene anisotropy explains logically the fact that graphene nanotubes, rolled-up form 

of graphene, have either conductivity, metallic or semiconducting. The rolling-up of graphene 

is realized mainly along two crystallographic directions [11]: along the major axis (the Z-

axis) and in perpendicular to it direction. Obtained nanotubes have the minimum-energy state 

in these cases. The rolling-up of graphene sheets runs spontaneously at the high temperature 

conditions; it is not yet controlled process. The rolling-up in other directions is 

thermodynamically unfavorable unstable process which does not provide the minimum-

energy state. And such carbon systems (graphene nanotubes) with an asymmetric 

crystallographic orientation with respect to the cylindrical axis of nanotubes are not forming. 

Ignorance about an existence of the anisotropy conditions a random orientation of 

graphene sheets in experiments conducted to present and, as a result, leads to diversity, 

jumble, and lack of coordination (confusion) in numerous experimental data obtained in 

different laboratories.  

Obviously, after the first trial tests described here, the comprehensive studying of the 

found anisotropy should be continued. For this purpose it is necessary to provide complete 

tests on graphene plates of less and bigger sizes (diameters), at low and high temperatures 

(4.2 and 295 K), low current (1 nA and less), having different areas (widths) of electric 

contacts, etc.  

One needs also to provide the continuous resistance readings during a slow heating of 

samples from 4.2 K to 295 K approximately over the 10 K (or 20 K) temperature interval. 

The resistance reading should be carried out along such an angular direction, corresponding 

to the maximal obtained value of resistance, i.e., along the major axis of the found resistance 

anisotropy (perpendicular to the Z-axis, see Fig. 11). The resistance readings will allow 

drawing the following dependence,  

 1ln  Tf ,      (1) 
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and, accordingly, to define the forbidden band gap, Eg, in tested graphene monolayers.  

Thus, as follows from the particular solutions of the general wave equation, atoms do not 

correspond to the Rutherford-Bohr model. They have the shell-nodal structure and resemble 

molecules composed of coupled nucleons (hydrogen atoms) that fill up potential nodes of the 

spherical shells of the atoms. Accordingly, atoms are not monocentric in their internal 

structure. Such a structure, verified from different sides during the period beginning from the 

publication of the book in 1996 [12], was confirmed directly experimentally in unstrained 

pristine graphene by the found anisotropy predicted in this two-dimensional crystal. The 

anisotropy behavior is conditioned by the shell-nodal structure of graphene constituents – 

carbon atoms and their specific ordering in the hexagonal lattice.  

Thousands years people thought about, what is atom? Now scientists must come back 

again to this topic. They should verify the findings of dialectical physics which are the 

subject of discussion in these Lectures, and, accordingly, independently carefully analyze the 

well-known particular solutions of the general wave equation to be convinced about 

truthfulness of the unknown earlier physical meaning contained in them and disclosed at last, 

as shown in these Lectures, within the Wave Model. 

Note also that with the development of high-tech on graphene, its crystallographic 

anisotropy must be taken into account to exclude arbitrary spatial setting of graphene layers 

on substrates with respect to the direction of their axis of anisotropy [8]. The controlled 

crystallographic orientation of graphene sheets is needed for fabrication on their basis of 

identical nanoscale devices with the strictly definite set-up parameters. This condition is an 

obligatory first step in high-tech based on use of monocrystalline materials, i.e., is а self-

evident technological operation. 
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Lecture 8 

 

Oxygen Compounds 
 

 

1. The shell-nodal structure of oxygen and neon atoms 

The oxygen atom has an external subshell, of the shell l = 2, completed by half and, 

therefore, containing only two polar-azimuth nodes (7 and 8, Fig. 1) filled each by the 

coupled hydrogen atoms.  

 

 

Fig. 1. Plots of the polar-azimuthal functions )cos()(,  mml  ( 1,0;2,1,0  ml ) and 

the disposition of the nodes defined by these functions on radial shells )(lR  of the oxygen 

atom: 0  (a) and 2/  (b) for the external half-integer shell at 2/sml   and 2s ; 

(c) the symbolic designation of oxygen 8O (at 0 ).  

This uncompleted subshell relates to the half-integer solution (Eq. (31), L. 2) of the order 

2/1l  where sml )2/1(  and 2s ,  
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As all uncompleted (noninteger, fractional) shells, the external subshell of oxygen lies in 

the equatorial plane.  

An outer subshell of the shell l = 2, completed by one quarter, 1s , laying also in the 

equatorial plane, belongs to the nitrogen atom 7N.  

The next uncompleted external subshell at 3s  of the shell l = 2 belongs to the fluorine 

atom 9F.  

The entirely completed (i.e., integer) external subshell responding to the solution for 

2m  of the same shell, l = 2, (see Fig. 6 in L. 3) has the neon atom 10Ne. This shell 

contains the four completed external potential polar-azimuthal nodes (numbered as 7, 8, 9, 

and 10 in Fig. 2). The next subshell, m = 0, with two empty polar nodes, of the shell l = 3 also 

belongs to the neon atom. 

 

Fig. 2. Plots of the polar-azimuth functions and their extremal points on the corresponding 

radial shells of the neon atom. 

 

The half-integer external subshell of oxygen is intermediate between the entirely 

completed external integer shell of carbon (l = 2, 1m ) and the shell of neon (l = 2, 

2m ).  

Thus, the mentioned above three atoms, having fractional external polar-azimuth 

subshells of the shell l = 2 (with one, two, and three nodes, respectively), are uncompleted 

structures with respect to the entirely completed integer shell of the atom with Z = 10 (having 

four completed nodes in the external subshell) and characterized by the wave numbers l = 2 

and 2m ,. 
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However, the external shell with four equatorial nodes (at l = 2, 2m ), being filled 

with coupled hydrogen atoms belonging to the neon atom  one of the balanced atomic 

formations, is, simultaneously, the resulting balanced shell for molecular compounds formed 

on the basis of the aforementioned atoms having noninteger external shells: N, O, and F (their 

atomic numbers Z are equal, respectively, to 7, 8, and 9).  

Therefore, the external subshell, fully completed in the case of neon, as being its proper 

shell, is considered for nitrogen, oxygen and fluorine – individual atoms having unfinished 

fractional external shells, as their improper shell. The deficient nodes, needed to finish 

building of the aforementioned fractional external shells to the fully completed state 

(characteristic to neon), are the active centers of adsorption of hydrogen atoms from 

environment for the above atoms.  

 

2. The shell-nodal structure of oxygen compounds 

The filling of the deficient (vacant) nodes of the improper shell with hydrogen atoms 

(single, or nodal bound with a nearby node in a molecule-like atom) occurs without 

breakdown of individuality, i.e., without destroying the distinctive pattern of strong bonds 

inherent in each of the atoms, including the aforementioned nitrogen, oxygen and fluorine 

having uncompleted shells. This provides the chemical (electromagnetic) level of interatomic 

bonds occurring with participation of the deficient nodes.  

A new atom is not formed when nodes of the improper shell are drawn into a process of 

exchange (interaction). A molecule with the structure, repeating the nodal structure of the 

atom having the balanced external shell, is formed in this case. 

In particular, the water molecule H2O is formed under adsorption of individual hydrogen 

atoms by two vacant nodes (drawn by dotted circles in Fig. 3) of the improper shell of the 

oxygen atom, O16

8 .  

The obtained molecule of water has a three-dimensional spatial disposition of the nodes 

with respect to the single-plane disposition of all filled nodes in oxygen. А structural analog 

of the H2O molecule is the short-lived neon isotope Ne18
10  (1672 ms half-life). This isotope 

has the same spatial disposition of the nodes and multiplicity of filling all the nodes just like it 

has H2O. However, of course, the four nodes of the external shell of the above isotope and the 

water molecule have the different coupling strength structure with the rest of their nodes that 

distinguishes the formed water molecule from the neon isotope: interacting atoms are not 

destructed at the formation of molecules, their individuality is saved. 

We see that the shell-nodal structure of an individual water molecule is not completed 

entirely – its two external nodes are filled on half, they contain by one hydrogen atom. 

Therefore this structure is not entirely equilibrium. Such a structure will continuously aspire 



http://shpenkov.com/pdf/Vol.5.Shell-NodalAtomicStructure.pdf 

 

 

136 

 

to form bindings with other water molecules by joining their half-completed nodes till the 

coupling of hydrogen atoms in them will not be achieved. 

 

 

Fig. 3. Conditional drawings of the formation of water molecule H2O and the density of 

probability (contour plots) ̂  of localization of substance (hydrogen atoms) in external shells 

for the planes ,0,0  yx  and 0z ; the arrows indicate the directions of external bindings 

inherent in the water molecule. 

 

If we take a look at the water molecule in the direction along the x-axis, we find the 

hexagonal structure of disposition of its nodes defining the six radial directions of exchange 

(interaction) in the plane x = 0. They are designated by the six smaller arrows in Fig. 3. Two 

other directions of exchange, perpendicular to the plane x = 0, are along the x-axis.  

The characteristic nodal structure of H2O stipulates the great variety of possible 

internodal bonds between water molecules and, accordingly, the great structural variety of 

molecules and crystals. Such a structure defines numerous symmetric-asymmetric hexagonal 

forms of snowflakes, the short-range order of liquid water and long-range crystalline order of 

ice, dynamic and thermodynamic anomalies of water, etc. Water is the most abundant 
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compound on the Earth and a major constituent of all living organisms. It is still the most 

enigmatic liquid on the Earth, apparently, because of the shell-nodal structure of the oxygen 

atom. 

Remember, the ̂  function define the probability density of any wave events (L. 2). The 

radial solutions of the wave equation give a series of slowly damped in amplitude, in radial 

direction, radial shells with alternating zero values, responding to a series of the roots of the 

solutions defined by Bessel functions )(J  and )(Y  [1]: 

    ))()((2//)(ˆ
2

1
2

1 
 lll iYJAR ,     (2) 

where kr  is the relative radius, A is the constant factor. The sections of some of the ̂  

functions shown in Fig. 3 demonstrate this. 

The noninteger solutions at sml )2/1(  ( ,...3,2,1,0s ) give the following potential 

constituents pjss ),,( ,   of the spatial function ),,(  , 

   )
2

cos(sin)(),,( 2
,,  

sRC
s

jsspjss ,    (3) 

where js ,  are the radii of the characteristic noninteger j-shells defined by the function 

)(sR . 

The nearest radial shell in a series of the j-shells at 2s , following the completely filled 

basic external half-integer shell, has two empty nodes of the same polar-azimuth orientation 

(coordinates). A picture of the distribution of the probability density in this case (in a plane y 

= 0) is shown in Fig. 3. The nearest radial j-shell, following the completely filled integer shell 

at 1;2  ml , has four empty nodes. A picture of the density of probability (a section in a 

plane x = 0) for this case is shown also in Fig. 3. The aforementioned uncompleted j-shells 

are the proper empty radial shells of the second order. Their empty nodes take part (along 

with nodes of the improper shell) in the formations of snow crystals, short- and long-range 

order of water, etc.  

Because of peculiarities of the shell-nodal structure, formation of oxygen molecules (just 

like any molecules) can be realized by different ways. Fig. 4a demonstrates one of the 

possible structures of the oxygen molecule O2 where it is realized the two-multiple 

overlapping of three completed nodes each of two bound oxygen atoms.  

Another possible structure of oxygen molecule O2, formed with participation of improper 

nodes, is shown in Fig. 4b,c. The overlapping (joining) of completed proper and empty 

improper external nodes leads in this case to the three-dimensional spatial disposition of the 

filled nodes in the obtained oxygen molecule.  
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The partial filling, by three fourths, of equatorial shells of bonded and partially joined 

oxygen atoms, with hydrogen atoms, is realized here. So that only three nodes of the four 

nodes needed to have the equilibrium shell, characteristic in Ne, are filled in them. Two 

improper nodes (shown by dotted circles in Fig. 4c) remain uncompleted, empty. The 

resulting structure, as not fully completed, is not entirely equilibrium. This stipulates its 

chemical activity to form the bonds with hydrogen atoms both single and nodal belonging to 

other atoms and molecules, first of all those of them having the non-equilibrium external 

shells. 

 

Fig. 4. Two possible ways of forming the oxygen molecule O2: (a) by mutual two-multiple 

overlapping each of the three completely filled nodes of two oxygen atoms; (b,c) by 

overlapping the proper completed nodes with improper empty nodes. 

 

A comparison of the structure of oxygen compounds presented here with the structure of 

carbon compounds, considered in previous Lectures, allows noting the following.  

The characteristic feature of carbon bonds in all innumerable carbon compounds is, 

along with two-multiple overlapping of the completed nodes, the three-multiple overlapping 

of all nodes of the constituent carbon atoms. The three-multiple overlapping takes place in all 

cyclic carbon compounds and in the well-known crystallographic forms of carbon: graphite, 

diamond, fullerenes, and graphene. 
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 Remember, three-multiple (or two-multiple) overlapping of the nodes in compounds 

means that the resulting nodal point in them belongs, respectively, to the nodes belonging to 

three (or two) individual atoms. And taking into account the coupling of the hydrogen atoms 

in the nodes, every such a point contains 6 (or 4) the overlapped hydrogen atoms. The 12 

hydrogen atoms in the nodal point of carbon compounds will be, at the three-multiple 

overlapping, in the case when elementary components of the compounds are carbon dimer 

molecules. We have considered this subject in L. 6. 

The overlapping occurs in such a way, in all cases with oxygen and carbon atoms, that 

the resulting interatomic bindings are realized just along the intra-atomic strong bonds 

existing between external nodes, belonging to the external shell, and conjugated internal 

nodes of the nearby internal shell each of interacting atoms.  

The next peculiarity is that single bindings between the 1st and 2nd nodes of the internal 

shell (corresponding to 1l , 1m ) nowhere overlap.  

In Fig. 5 we present one more way (shown) of the formation of oxygen molecule O2 and 

other oxygen compounds, in addition to the presented above.  

 

 

Fig. 5. (a) One more possible way of the formation of oxygen molecule O2 and possible 

structures of carbon oxide CO, carbon dioxide 2CO , and ozone 3O ; (b) the symbolic 

designation of the oxygen compounds characterized by two-multiple overlapping of the 

interatomic nodes. 

 

This way is characterized by the two-multiple overlapping of the completed nodes along 

the internodal strong bindings. Such overlapped bonds, apparently, are realized, as shown in 

Fig. 5, at forming the spatial structure of the O2, CO, CO2, and O3 molecules. Take attention 
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at the perfect symmetry of trioxide (ozone O3). It has three improper nodes above and three 

improper nodes below the plane of the disposition of completed nodes, i.e., above the 

opposite sides of the plane. They are shown here by the dotted circles. The two improper 

nodes belonging to the individual oxygen atom O16

8  were shown above in Figs. 3 and 4 (and 

are shown below in the next figures). Their existence makes this compound is very active. 

Actually, as well-know, ozone is a powerful oxidant. It is much less stable than the diatomic 

allotrope of oxygen and breaks down in the lower atmosphere to normal dioxide.The 

analogous interatomic bindings (just like above considered for oxygen and carbon 

compounds) take place for nitrogen oxides. As an example, the formation of two hypothetical 

structures of nitrous oxide N2O is shown in Fig. 6a,b.  

. 

 

 

Fig. 6. Two possible ways (a, b) of the formation of nitrous oxide N2O and the density of 

probability ̂  (contour plots) drawn for the external equatorial shells of separate atoms O16

8  

and N14

7  (the upper row, left and right) and for the selected parts of the joined shells. 
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The first structure (Fig. 6a) is presented in the unfolded form. Two associated nitrogen 

atoms (left and right) have rotational degrees of freedom (around the joined nodes). They will 

form additional bonds, turning about up to overlapping either single nodes or pairs of nodes 

belonging to their internal shell (at 1,2  ml ) with corresponding conjugated 

(approached) nodes of two external shells of oxygen.  

The next but very enlightening example with Al2O3 structure in unfolded and closed 

forms, admissible by the solutions, is presented in Fig. 7. 

 

 

Fig. 7. The shell-nodal structure of the O8
, eN10 , and Al13

 atoms (a, b) and their conditional 

designations (c) for different projections; the unfolded (d) and closed (e) structure of bindings 

in Al2O3. 
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Improper vacant nodes of every from three conjugated oxygen atoms (designated as 

small hollow circles in Fig. 7c,d) join with external nodes of two aluminum atoms, as 

indicated in Fig. 7d by arrows. We see the perfect compact arrangement of all nodes of two 

aluminum atoms (up and down, Fig. 7e))  and three oxygen atoms resulted in the stable 

neutral structure, as if five individual neon spaces were tightly embedded and bound together 

(reminiscent of a perfect fitted cogged joint).  

The structure of the atoms with completely filled atomic shells is defined by the 

superposition of embedded whole shells; the structure of the rest atoms includes the 

fractional external shells (we have considered this issue in more detail in L. 4). The 

superposition of atomic structures, graphically demonstrated here, is provided by more 

complicated solutions to the wave equation, which define the structure of molecules and 

crystals.  

 

3. Conclusion 

Thus, basing on the shell-nodal structure of the atoms, disclosed in the particular 

solutions of the wave equation, an existence of sets of all possible structural forms in 

chemical compounds (the structural diversity) become naturally and logically explainable. 

The true structure of the atoms was and still is an open question in natural science. A 

unified theory of atoms has not been built so far. In the framework of quantum-mechanics 

(QM), the problem on the comprehensive complete description of atomic structure is 

unsolvable in principle. The QM is an abstract-mathematical theory. It was being developed 

on the basis of a series of the abstract postulates to describe first of all an optical spectrum 

observable in the hydrogen atom. The fit of the calculations to the experimental data became 

its major method. At the present, the QM represents a theory, which deals mainly with the so-

called “electron structure” (“electron configuration”) of atoms. The spatial structure of the 

atoms is terra incognita for QM.  

The structure of the main atomic constituents (protons and neutrons), which are 

considering in modern physics as the superdense particles, and an internal structure of a tiny 

atomic nucleus (with respect to the whole atom), where, as believe, these particles are placed, 

are the realm of other branches of modern physics. As a consequence, the nature and 

structure of atoms and their isotopes are still an unsolved mystery for physics. Accordingly, 

we assume that the nature of Mendeleev’s Periodic Law, reflecting the observed regularity in 

the behavior of the atoms at their interaction with each other, caused by the specific atomic 

structure inherent in each of them, but yet unknown, is not properly understood for this 

reason.  

From the particular solution of the wave equation for the spherical wave space it follows 

that all atoms, having the shell-nodal structure, are elementary molecules of the hydrogen 
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atoms (to which we refer proton, neutron, and protium). Only the hydrogen atoms, as the 

single-centre elementary wave formations, are atoms in the full sense of the word. That is 

why we call all rest of the atoms Z-nodal elementary molecules of the hydrogen atoms, Z-

NEMs. This definition reflects the fact that the atomic number Z each of the atoms in the 

Periodic Table is equal to (defines, indicates) the number of principal (potential or kinetic) 

polar-azimuthal nodes in all shells of the atom. 

The spatial structure of the molecule-like atoms recalls the spherical resonant cavities [2] 

which are also described by Bessel functions. It means that all types of elementary lattices 

represent (repeat), in essence, elementary nodal structures of standing waves in a limited 

three-dimensional wave physical space. For the spherical space, the standing wave structure 

was presented schematically in Fig. 6 of L. 3.  

The wave concept on the atomic structure is based on recognizing, as an axiom, the wave 

nature of the Universe and, hence, the wave nature of matter. Respectively, in accord with 

this axiom, the general wave equation, which describes all wave processes, must describe 

also the structure of matter at all levels of the Universe, including atomic and subatomic, that 

is the subject of the present Lectures. A key role for the development of the shell-nodal 

atomic model belongs also to the Dynamic Model of elementary particles, atomic 

constituents, which led to the discovery of a series of the fundamental physical constants 

unknown earlier [3]. These constants made it possible to calculate the corresponding 

parameters characteristic for the atomic and subatomic wave formations and fields of their 

interactions. 

The shell-nodal (multi-center) atomic model, developed on the basis of the wave 

concept, reveals the nature of different symmetry inherent in crystals, including the 

symmetries found in quasi-crystals “strictly forbidden by the mathematical laws of 

crystallography” [4-6], and the nature of the Periodic Law. The understanding of the 

regularity observed in properties of the atoms allowed arranging them in the Periodic Table 

of the Atoms in a new form presented in L. 4.  

The periodicity in chemical properties of the elements is a result of the disclosed quasi-

similarity of the nodal structure of external shells of the atoms. Taking into account the latter, 

some of the heavier elements and all rare-earth elements get their true places in the 

aforementioned Periodic Table. Moreover, taking into account the multiplicity of filling the 

nodes, the nature (structure) of all possible atomic isotopes (already known and not yet 

observed) was naturally revealed as a result.  

It should be stressed also that, together with other ways, the interatomic wave exchange 

(interaction) at the formation of chemical bindings is realized along the intra-atomic strong 

bonds existed between all the nodes in each of the interacting atoms. With this, these intra-

atomic strong bonds overlap without being destroyed. The same condition is fulfilled at the 

formation of carbon compounds (considered in previous Lectures) [7].  
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The overlapping strength is realized by the elementary quanta of the rate of mass 

exchange, i.e., by exchange charges of electrons. It means that the main role at the formation 

of interatomic bindings in molecules and crystals belongs to major constituents of the atoms 

the nodal hydrogen atoms. Electrons play the secondary role; they define only the chemical 

bonds strength, which we call additive in respect to strong (“nuclear”) bonds called 

multiplicative. We will consider the above notions in the next Lecture devoted to the 

derivation of the bonds strength. 

Finally, it should be noticed that the disclosed shell-nodal structure of the atoms 

represents, figuratively speaking, something like the “genetic code”, which defines, in a 

definite extent, the structural diversity, symmetry, and periodicity in Nature. 
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Lecture 9 

 

Intra-atomic and Interatomic  

Binding Energies 
 

 

1. Introduction 

Derivation of binding energy of nucleons in deuterium, tritium, helium He4

2
, and carbon 

C12

6 atoms and interatomic bindings in molecules in the light of the shell-nodal atomic model 

are presented in this Lecture. It is shown that the internal structure of nucleons at the level of 

constituent g-particles recalls the shell-nodal structure of silicon of the nucleon level. The 

calculated binding energies well agree with the binding energies commonly estimated from 

the mass-energy equation as the mass defect.  

Recall briefly the basic information that is needed in this Lecture devoted to the 

derivation of binding energies. Shell-Nodal Atomic Model (SNAM) allows explaining the 

structure of matter at atomic and subatomic levels in a more logical and simple way. The 

model is based on particular solutions of the ordinary wave equation in spherical polar 

coordinates and on the Dynamic Model of Elementary Particles (DM). 

As follows from the SNAM, atoms are molecules of the hydrogen atoms, which are by 

two in the principal potential nodes of spherical shells. Radii of the shells are defined by the 

roots of Bessel functions.  

The wave function ̂ , 

    kpmll itTYkrR  )(ˆ),(ˆ)(ˆˆ
, ,     (1) 
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where Al is the constant factor; kr ; )(
2

1 

l
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1 
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J  and )(
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the Hankel, Bessel and Neumann functions, correspondingly, 
c

k








2
 is the wave 

number. It is the particular solution corresponding to integer values of the wave number m 

( sm 2
2

1
  and Ns ) the kinematic structure of standing spherical waves in wave physical 

space and the shell-nodal structure of the atoms with fully completed external shells.. 

All spatial components are determined with the accuracy of a constant factor A, imposed 

by boundary conditions, which have no influence on the peculiarity of distribution of the 

nodes on radial spheres. The superposition of even and odd solutions defines the even-odd 

solutions. Odd solutions describe the nodes, lying in the equatorial plane of atomic space. In 

this plane there are also solutions in the form of rings in space. 

̂ -Function represents any parameter of the wave field such as, for example, potential-

kinetic displacement, potential-kinetic speed, physical potential-kinetic probability, etc. 

The radial component )(ˆ krRl  of the wave function ̂  (1), representing the density of 

potential-kinetic phase probability [1], describes the radial field of displacements of the wave 

parameter, which the ̂ -function represents in the wave equation. The polar component 

)(,  ml  describes the polar displacements, and )(ˆ m  describes the azimuth displacements. 

The potential solutions define the coordinates of rest, whereas the conjugate kinetic 

solutions define the coordinates of maxima of motion. Thus, the potential solutions give us 

the spatial coordinates of equilibrium domains (nodes of standing spherical waves) in the 

wave atomic space.  

Thus, we should distinguish two solutions, potential and kinetic; do not mixing them. 

Rest and motion (nodes and antinodes) are the two qualitatively different states. Kinetic 

harmonics are the same, in form, as potential harmonics, but they are displaced in space in 

the radial direction and turned in the azimuthal direction, around the z-axis, with respect to 

potential harmonics (just like mcos  with respect to msin  so that the kinetic extrema are 

between the corresponding potential extrema (as alternated nodes and antinodes in standing 

waves). 

The geometry of characteristic states on radial shells is expressed by extrema and zeros of 

the polar-azimuthal components of the ̂ -function. A schematic form of the potential 

solutions of the ̂ -function for 3,2,1,0l , which relate to the shells of the atoms under 

consideration, are shown schematically in Fig. 1 (it is a part of the solutions presented in Fig. 

6 of L. 3,).  
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Fig. 1. A schematic view of the solutions   CosmRC mllpml )()(),,( ,,  of Eq. (2) 

presented in the form indicating the spatial disposition of principal potential polar-azimuthal 

nodes in the atomic shells; their ordinal numbers 1, 2, …, 28 coincide with atomic numbers. 

 

The standing wave structure presented in Fig. 1 uniquely determines the shell-nodal 

structure of the atoms in the range of hydrogen (1H) to nickel (26Ni). The atoms having 

completed outer shells and 12Ar, which has a half-integer outer shell with four nodes lying in 

equatorial plane as 10Ne, are indicated herewith. 

 

2. The shell-nodal structure of helium He4

2
, and carbon C12

6  

The completely realized polar-azimuthal n-th potential shell (with potential nodes) is 

defined, in accordance with solutions of the wave equation (2), by the function 

)cos()()(),,( ,,,,   mRC mlnllpnlml ,    (4) 

where nl ,  is the relative radius of the n-th external radial shell. The geometry of angular 

disposition of nodes is determined by polar-azimuthal functions )cos()(,  mml . The 

latter and their sections are presented in Fig. 2 for hydrogen, helium, and carbon atoms. In the 

case of carbon atom, two configurations of functions,  cos)(1,1  and )2/cos()(1,1  , 
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different by initial azimuthal phases ( 0  and 2/ ), are shown in Fig. 2. The 

octahedral structure ( 2/ ) is, apparently, realized in the diamond structure of carbon. 

 

 

Fig. 2. The structure of potential polar-azimuthal functions (integer solutions) for hydrogen 

1H, helium 2He, and carbon 6C. 

The nodal structure of He4

2
 and C12

6 , originated from (4), is conditionally shown in Fig. 

3. The carbon’s nodal structure is depicted with the plane disposition of its six principal 

polar-azimuth nodes ( 0 ). All principal polar-azimuthal nodes in the stable isotopes, 

which are presented in this figure, are filled with paired nucleons - say H-atoms (to which we 

refer the hydrogen atoms, protons and neutrons). Polar nodes are situated at the polar azis z, 

forming something like “spinal” of atoms. 

 

Fig. 3. The nodal structure of helium He4

2
 and carbon C12

6 .  

The nodal structure of carbon isotope C12

6  and its polar-azimuth functions are shown also 

in Fig. 4. The carbon atom has the central empty node (m = 0, l = 0) and four spherical shells: 
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two shells (m = 0, l = 1, 2) with four empty potential-kinetic polar nodes (situated along the 

z-axis) and one ring, two shells ( 2,1;1  lm ) with six completed potential polar-azimuth 

nodes and six empty kinetic polar-azimuth nodes (the lasts are not in Fig. 1 and in other 

figures). 

 

 

Fig. 4. Plots of potential polar-azimuth functions  mml Cos)(,  ( 2,1,0l ; 1,0 m ) (a), 

their extremal points on radial extremal shells )(lR  (b), and the symbolic designation of 

carbon 6C (c). 

 

Six potential polar-azimuth nodes (at 1m ), completed every by two H-atoms, lie in 

one plane: two potential nodes are in the inner shell (l = 1) and the four ones are in the outer 

shell (l = 2). Six empty kinetic nodes (not shown here) lie in a perpendicular plane with 

respect to the plane of disposition of potential nodes, on kinetic radial shells. 

Hydrogen is mainly in coherent states in Nature, in particular, in the form of coupled 

atoms – hydrogen molecules H2. Paired H-atoms, filling polar-azimuth nodes, apparently 

provide for the stable state of atomic shells. The condition of coupling, observed in nature, is 

inherent not only for H-atoms in nodes of individual atoms, but probably also for individual 

atoms themselves in solids, liquids, and molecules built on their basis. 

The distance r between nodes is defined by roots of Bessel functions krz mn , , as 

follows from solutions (3) of the wave equation (2). 

 

3. The energy of exchange 

The derivation of binding energy of nucleons, located in nodes of atoms, rests on the Law 

of Universal Exchange, which originates from the Dynamic Model of Elementary Particles 
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(DM). Therefore, we will recall now the formula of exchange used for calculations of binding 

energies here. 

As follows from the DM [2], the law of central exchange has the form 

2

0

212

4 r

mm
F


 ,       (5) 

where  is the fundamental frequency of exchange, m1 and m2 are associated masses defined 

by the formula 
22

0

3

1

4

rk

r
m

e

r




  , 3

0 1  cmg  is the absolute unit density. This law lies at the 

foundation of nature. If 
e , 11810869162505.1/  sme ee , this law describes 

exchange (interactions) at the atomic and subatomic levels: 

2

0

212

4 r

mm
F ee


 .       (6) 

A particular case of the law (5) is the law of universal gravitation, which we present in the 

form 

2

0

212

4 r

mm
F gg


 ,      (7) 

where g is the fundamental frequency at the gravitational (mega) level of the Universe, i.e., 

the fundamental gravitational frequency. Its magnitude, defined on the basis knowing the 

value of the gravitational constant 2138106742.6   sgcmG , is equal to 

14

0 101581.94  sGg
.     (8) 

The existence of the gravitational frequency g and, hence, the corresponding 

gravitational radius of elementary particles Mkmc gg 35.327/   shows the 

indissoluble bond of micro- and mega-objects of the Universe in the unit complex of the 

Infinitely Small and Infinitely Big, as the coexisting polar oppositions.  

According to the DM, and the law of the universal exchange (6), the energy of exchange 

(interaction) of particles is defined, at atomic and subatomic levels, by the formula 

r

mm
E e

0

212

8
 ,      (9) 

where 11 qme   and 12 qme   are exchange charges of interacting particles. We will use 

just this formula at the derivation of internodal binding energies of nucleons in atoms. 
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4. The binding energy of helium He4

2
 

The binding energy of nucleons in atoms is attributed to three causes and consists of: 

(a) the binding energy of paired nucleons in nodes, i.e., in essence, it is the energy of 

deuterons; 

(b) the binding energy of nucleon nodes with atomic shells to which these nodes belong; and 

(c) the energy of internodal exchange (interaction) of nucleons. 

The derivation of the first constituent of the binding energy (a) on the basis of the DM 

and SNM with use of Eq. (9), we will consider latter at the derivation of the binding energy 

of deuterium. Here, in order to take into account the binding energy of deuterium, we will use 

the value obtained from the mass defect formula: 

mcE  2       (10) 

A deuteron is the nucleus of a deuterium atom, and consists of one proton and one 

neutron. The mass of the constituents is 

amumm np 015941.2008665.1007276.1  .   (11) 

The atomic mass of the deuteron D (
2
H) is 2.013553 amu; hence, the mass difference is 

amum 002388.0 . Thus, according to (10), a deuteron’s binding energy is 

MeVmcED 224.22  .     (12) 

The second constituent of the binding energy (b) is defined from the following 

conditions. In a spherical atomic field, radial amplitudes of oscillations of H-units in nodes of 

the n-th atomic shell are determined by the expression 

krkreAA ls /)(ˆˆ         (13) 

originated from solutions of (2) for the radial function )(ˆ krRl . Then, the energy of 

oscillations takes the form [1]: 

)(
2

)(
22

1

2

2

2

22

2

2222

kre
r

Acm
kre

kr

Am
h

Am
E l

p

l

psp

s 










 ,  (14) 

where mp is the mass of H-unit. Obviously, that 

)(
2

)(22 2

2

2

2

kre
kr

cAm
kre

kr

A
mAmh l

p

lpssp


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






 ,   (15) 

where   
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 )()(
2

)(ˆ)(
22

2
1

2
1 krYkrJ

kr
krekre llll  


,     (16) 

)(
2

1 krJ
l

 and )(
2

1 krY
l

 are the Bessel functions. 

At 0n , in the wave zone ( kr  1), we have 

0

2 /2 rcAmh p .      (17) 

From this, we define the constant A: 

      
cm

hr
A

p


2

0 .       (18) 

In the wave zone, er 0 , then assuming that the radial action for the mass mp is 

epmh  2 , we arrive at 

      
ccm

hr
A e

p





 

2

0 .     (19) 

If one assumes further the speed υ to be equal to the Bohr speed, the constant A takes the 

value of 

      cmA 910370113189.1  .     (20) 

Accepted suppositions lead to the following energy of the H-unit in a node, at 

up mm  (atomic mass unit):  

 
22

)()(
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)(22

2222

2

2

2222

2
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2
1 Am
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krYkrJ
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l
usu

s











.  (21) 

At the level of the fundamental frequency e, we have 

     keV
Am

w eu

u 72.3398
2

22




      (22) 

and 

     )(
2

,

2

2

,

22

sll

sl

useu
s ze

z

wAm
E 


 ,      (23) 

where krz sl ,  is the root of Bessel functions [3] . 

The binding energy (23) is only an estimation of the bond of an atomic shell with the n-

node, because it was obtained on the basis of a series of suppositions, which should be 

regarded as preliminary axioms. A transition from one n-shell into another is defined by the 

energy of transition: 
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wE .     (24) 

The root 89357697.01,0,  yz sl  defines the equilibrium distance 

cmyr eHe

8

1,0 10433196073.1       (25) 

between two polar-azimuthal nodes on the external atomic shell of helium He4

2
 (see Fig. 3).  

Hence, according to (23), the binding energy of a nucleon node with the atomic shell in 

helium is 

MeVye
y

w
E u

shell 92109.3)( 1,0

2

02

1,0

 .    (26) 

The third constituent of the binding energy of helium (c), the energy of internodal 

exchange, is determined by the formula (9). The quantum of internodal nucleon exchange, 

emq  , under formation of internodal bonds at the nucleon (“nuclear”) level, is the 

nucleon’s exchange charge. It means that the exchange charge of two such quanta maximum, 

by one per every node (proton’s or neutron’s exchange charge), can take part in the internodal 

exchange. Then, at 
Herr   (25), 11810869162505.1  se , and the proton’s exchange 

charge epp mq  , where 

     gmmm p

24

21 1067262171.1       (27) 

is the associated mass of a proton, we have the energy of exchange (per two pairs of 

nucleons) 

MeV
r

m
E

He

p

eexch 91883553.16
8 0

2

2 


 .     (28) 

Hence, the exchange binding energy per nucleon is 

    MeVEE exchnexch 229708883.44//  ,      (29) 

and per single internodal nucleon bond (pair),  

MeVEE exchbexch 459417765.82//  .      (30) 

For estimation, we take into account the double bond between nodes in helium-4 realized 

by the elementary quantum of internodal nucleon exchange. It means that two pairs of 

nucleons participate in the internodal bond, so that the whole value (28) must be taken in this 

case. 
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As a result, the binding energy of helium atom He4

2
 obtained as the sum of three 

constituents: (12), (26), and (28), is defined by the expression 

exchshellDatomHe EEEE  22,      (31) 

and equal to 

.209.2991883553.1692109.32224.22, MeVE atomHe     (32) 

In the shell-nodal atomic model there is not such a notion as a nucleus. The value (31) 

was obtained for the helium atom as a whole independently of an existence of two electrons 

in the helium atom. The contribution of two electrons in the binding energy is insignificant. 

The energies of electron bond with proton (ionization energies) and of interelectron exchange 

(interaction) are very small in comparison with the energy of internucleon exchange. 

Actually, according to the formula of exchange (9), we have 

eV
r

m
E

He

e

eexche 24.5
8 0

2

2 


 ,     (33) 

where 1910702691627.1   sgemee  is the exchange charge of an electron. The 

energy obtained naturally defines the difference between the two energies of ionization of the 

helium atom: 

eVeVEEE ionionbonde 24.5)18.4942.54()1()2(  .    (34) 

Thus, finally, at the subtraction of energy of two electrons 222 cmE ee   from (32), the 

binding energy of helium ion 24

2

He  (“nucleus”) is 

MeVEEE eatomHeionHe 187.28510998902.02209.292,,  .  (35) 

If we substitute the neutron’s mass gmn

241067492728.1   in place of mp in (27), we 

will arrive at   

MeVE ionHe 23.28,  .      (36) 

Resulting magnitudes, (35) and (36), almost coincides with the binding energy 

MeVmcEHe 3.282       (37) 

obtained for the helium nucleus on the basis of the formula on the mass defect. 
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5. The binding energy of carbon C12

6  

Basing on solutions of Eq. (2), we must take into account only those shortest internodal 

bonds in the carbon atom C12

6  which distinguish by the shortest distances between wave 

shells of internodal nucleons. Angular directions of such bonds are in more or less extent 

conditioned by the space geometry of polar-azimuthal functions (see Figs. 2 - 4). Only along 

these directions shown in Fig. 5a the chemical bonds between nucleon nodes of different 

atoms are realized at formation of molecules and crystals [4].  

 

 

Fig. 5 The geometry of internodal nucleon (“nuclear”) bonds in the carbon C12

6  atom (a) and 

characteristic internodal distances (b) (between their centers) defined by the roots of Bessel 

functions.  

 

Five internodal bonds responsible for the binding energy in the carbon atom have the 

same length 01 7.2 rr   (where r0 is the Bohr radius), defined by the root of Bessel functions 

1,0y  (as in the case of the helium atom): 

89357697.01,0 y ,  cmyr e

8

1,01 10433196073.1     (38) 

All other characteristic internodal distances in the carbon atom, shown in Fig. 5b, are not 

arbitrary as well. They are defined, as r1, by the roots of Bessel functions. This is justified by 

regularities of wave processes, described by the Bessel functions that influence the strictly 

definite structure of the material spaces at all level: 

57079633.1
1,

2
1 y   cmyr e

8

1,
2

12 10519379088.2      

40482556.21,0 j   cmjr e

8

1,03 10857067342.3     (39) 

84118378.11,1 j   cmjr e

8

1,14 10953049879.2    

 



http://shpenkov.com/pdf/Vol.5.Shell-NodalAtomicStructure.pdf 

 

 

156 

 

As in the case of the helium atom, three constituents of the binding energy must be taken 

into account. The first one, considering the coupling of two nucleons in a node in the form of 

deuteron, gives us the deuteron’s binding energy ED of 2.224 MeV (12) per node. 

The second constituent of the binding energy takes into account the bond of a node with 

the atomic shell where this node is located. According to (23) and (24), for the 1st and 2nd 

nodes (Fig. 5) situated at the internal atomic shell (the shell of helium), we have 1,0, yz ml   

and MeVE shell 92109.3int,   (26).  

Transitions of nucleons from the internal shell to the external shell, where four nodes are 

located, are defined by the formula of energy of transitions (24). For 1,0, yz mp   and 

1,
2

1, yz nq  , we have MeVEtrans 54363.2 . The binding energy for every of four nodes of 

external shell is 

MeVye
y

w
E u

shellext 37745.1)(
1,

2
1

2

2
12

1,
2

1

,  .    (40) 

The third constituent of the binding energy of the carbon atom C12

6 , the energy of 

internodal exchange, is determined by the formula (9). According to the latter, an elementary 

binding energy, caused by exchange interaction between two nodes a distance r1 apart, is 

MeV
r

m
E

p

eexch 91883553.16
8 10

2

2 


      (41) 

 (as in the case of the helium atom (28)).  

The exchange energy (41) (of the quantum of nucleon exchange epp mq  ) of the 1st 

node (Fig. 5a) expends on three equal bonds with 2nd, 3rd, and 5th nodes; and the 2nd node, 

with 1st, 4th, and 6
th

 nodes. Hence the binding energy per node (we mean 1st and 2nd nodes 

here) is 

nodeMeVEE exchexch /639611843.5)3/1(1,  .    (42) 

Every node of the 3rd, 4th, 5th, and 6th nodes are connected only with one node (1st or 

2nd). Hence, the binding energy per node (for nodes from 3rd to 6th) is 

nodeMeVEE exchexch /459417765.8)2/1(2,  .   (43) 

Thus, we have the following internodal binding energies between the nodes of the 

numbers (1-2):    

bondMeVEE exchexch /27922369.112 1,21,  ;    (44) 

the numbers (3-1), (5-1), (4-2), (6-2):  
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bondMeVEEE exchexchexch /09902961.142,1,13,      (45) 

Thus, the total energy of internodal exchanges is 

MeVEEE exchexchexch 67534212.674 13,21,int,   .    (46) 

A resulting sum of all constituents of binding energy of the carbon atom C12

6 , calculated 

for qp: (12), (26), (40), and (46), is 

MeVEEEEE exchshellextshellDatomC 37132212.94426 int,,int,,  .  (47) 

 (Calculations for the exchange charge of a neutron 
enn mq   give 94.48781375 MeV). 

At subtraction of the energy of four valent electrons, MeVEe 022.24  , from (47), we 

arrive at the energy of the carbon ion 412

6

C , 

MeVEEE eatomCionC 34932212.924,,  .    (48) 

Thus, the binding energy of the carbon ion 412

6

C , obtained here on the basis of shell-

nodal atomic model and the DM, is in well agreement with the binding energy of the carbon 

nucleus C12

6  equal to MeV488.92 , calculated from the formula on the mass difference, 

mcE  2 . 

For the derivation described above, the used value of the first constituent of the binding 

energy of helium and carbon atoms, 2.224 MeV, originates from the well-known formula 

mcED  2  (12). It is the binding energy of deuteron D ( H2

1
). We have the right to take this 

value assuming that according to shell-nodal atomic model the coupled protons and neutrons 

in nodes are in the form of deuteron. 

We will show further that the binding energy of deuteron ED is also derived on the new 

basis accepted in this work, just like the derivation of the binding energy of helium and 

carbon atoms. This aim is achieved on the basis of the supposition that solutions of the wave 

Eq. (2), resulted in the shell-nodal structure of atomic and interatomic (crystal or molecular) 

spaces (Fig. 1), are also valid for the subatomic (intra-nucleon) space. It means that basic 

constituents of atoms, protons and neutrons, have the same shell-nodal internal structure 

depicted graphically in Fig. 1. In this connection, we will explain first of all our point of view 

on the nucleon structure and answer to the question: what particles of the subatomic level are 

the main “building bricks” for nucleons? 

Let us proceed to elucidate now this question as it is solved in the framework of the 

Dynamic Model of Elementary Particles. 
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6. The g-lepton structure of proton and neutron  

The spectrum of associated masses, following from the DM, is considered in detail in L. 

11 and L. 12 of Vol. 3. In dependence on the character of exchange, we distinguish the 

masses in the longitudinal exchange (at motion-rest in the cylindrical field of matter-space-

time), the masses in the transversal exchange (transversal oscillations of the wave beam), and 

the masses in the tangential exchange (at motion-rest in the cylindrical space-field). 

We have come to the conclusion that the result obtained gives the reason to assume that 

g-lepton is a highly stable particle, which possibly is a constituent (like a nucleon for atoms) 

of protons, neutrons, and other elementary particles of this series. If only this is true, then on 

the basis of g-lepton and the periodic law of space [5], it is possible to compose the spectrum 

of elementary particles. In such a spectrum, g-lepton is hydrogen analog, -quantum is 

deuterium analog, -meson is tritium analog, -meson is helium analog, etc. 

The g-lepton has the following elementary charge 

      eehcqg 5.68/0  .      (49) 

The division of the charge qg by the fundamental frequency e gives its associated mass: 

eg mm 5.68 .       (50) 

Evidently, g-lepton and the Dirac monopole g are the same particle. At that time, the mass of 

the monopole was determined incorrectly, therefore, g-lepton was not rendered due attention. 

The radius of its sphere, defined from the formula of associated masses ((21), V. 2, L. 2) 

22

0

3

1

4

ge

rg

g
rk

r
m




 , at the condition 122 ee rk , 

3
0 1  cmg , and 1r  (at the field level), is 

equal to 

     
egg rcmmr 410706.14/ 9

0
3

1

  .    (51) 

We see that rg is very close to the rational golden section of the fundamental metrological 

period : 

      cmerg

910lg2
8

5   .      (52) 

Accepting the supposition that nucleons (protons and neutrons) consist of g-leptons, we 

must recognize that nucleons represent by themselves, by analogy with atoms of the nucleon 

level, the silicon of the g-lepton level of the atomic number 14 (having 14 nodes according to 

solutions of Eq. (2) presented in Fig. 1). Indeed, let the mass of g-lepton will be precisely 

multiple to a quarter of the fundamental period, with respect to the electron mass me, 
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eeg mmem 21881769.6810lg2)4/1( 2  .     (53) 

The masses of proton and neutron are, correspondingly, 

ep mm 1526675.1836   and  
en mm 683645.1838 .   (54) 

Hence, it is clear that the mass number of nucleons at the g-lepton level must be rather 

more than 27, because of the relation, 

95273397.26/ gn mm ,     (55) 

with taking into account an essential value of the binding energy of g-leptons influenced on 

the resulting mass of nucleons. 

On this basis, we assume that protons and neutrons represent, respectively, at the g-lepton 

level, two stable isotopes analogous, in nodal structure, to the silicon isotopes, Si28

14
 and Si29

14
. 

Their nodal structure, in full agreement with solutions of the wave equation (2) (Fig. 1), is 

presented in Fig. 6. The polar-azimuthal functions of 14Si and spatial disposition of its 

spherical shells and potential nodes are shown in Fig. 7. 

 

 

Fig. 6. A symbolic design of the shell-nodal structure of silicon, Si28

14
 and Si29

14
, in accordance 

with the shell-nodal structure of atoms shown in Fig. 1. 

 

Thus, we regard a neutron of the Si29

14
 structure, in the above meaning, as one of the 

unstable isotopes of protium (the simplest hydrogen atom H1

1
). The neutron contains 

additionally one g-lepton in comparison with the proton of the Si28

14
 structure. We assume that 

this g-lepton is in the central polar potential-kinetic node (such nodes are metastable places 

for constituent particles) and forms with an electron a g-e pair (see Fig. 8). 

As follows from calculations, the paired electron of the central node is responsible for the 

negative magnetic moment of the neutron. The neutron is a stable isotope only in a bond state 
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with other neutrons, like Si29

14
. It decays during s1000  to a proton (the Si28

14
 analogous), 

an electron, and a neutral g-lepton (an antineutrino ~  of nuclear physics): 

gepn   .       (56) 

 

 

Fig. 7. The structure of polar-azimuthal functions (at the left), and the space arrangement of 

the 14 polar-azimuthal nodes in four (I – IV) spherical shells of 14Si. 

 

The shell-nodal structure of Si28

14
 (and Si29

14
) (Fig. 6 and 7) is more complicated than the 

shell-nodal structure of C12

6  (Fig. 4), because it has two shells and eight nodes more (at 

2,2  ml  and 1,3  ml ). An internal shell (I) with two polar-azimuthal nodes (1, 2) 

is the shell of the helium atom (see Fig. 3). The second internal shell (II) is the external shell 

of the carbon atom. The third shell (III) is the external shell of the neon atom. The shell IV is 

the external shell characteristic for the silicon atom. 

According to SNAM, the unrepeatable (specific) structure of external shells mainly 

defines individual properties of atoms distinguishing them from each other. The external shell 

of 14Si has two collateral nodes not completed by nucleons in the isotopes of silicon under 

consideration. Silicon is the first element of the periodic table with such nodes (unnumbered 

in Fig. 1 and other figures), which are metastable states judging from the fact that amplitudes 

of polar-azimuthal functions determining their positions on shells are essentially smaller that 

corresponding amplitudes of principal (numbered in presented figures) nodes. This feature 

provides the motion, in its internal space, not only of particles, which are much less than 

nucleons, but also the motion of nodal nucleons themselves. Quantum theory interprets this 

phenomenon as the motion of “holes”. 

A neutron has the negative magnetic moment of the value 
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12610)23(96623640.0   TJn       (57) 

 (according to the CODATA [6]). This magnitude is approximately in 1.46 times less in 

absolute value than the (positive) magnetic moment of a proton. A simplified picture of the 

neutron g-lepton structure with the surrounding field looks conditionally as it is depicted 

graphically in Fig. 8. 

 

Fig. 8. A neutron as an analogous of the silicon atom Si29

14
 with the surrounding field; rn is the 

neutron outer shell; g-e is the g-lepton-electron pair; r? is the inner radius of the neutron 

shell; 2g is the condition designation of 14 principal polar-azimuthal potential nodes 

completed with coupled g-leptons (the 29
th

 g-lepton coupled with an electron is in the central 

polar potential-kinetic node, on the z-axis); n  is the magnetic moment of the neutron. 

 

According to the formula of mass defect (10), the binding energy of a proton, consisted of 

28 g-leptons, is to be 

MeVmmcmcpE pg 79769638.62)28(2)( 2  ,   (58) 

so that the binding energy per g-lepton is 

MeVpApEp 242774871.2)(/)()(  ,    (59) 

where 28)( pA  is the mass number of a proton at the g-lepton level. 

The corresponding values for a neutron ( 29)( nA ) are 

MeVmmcnE ng 36715712.71)29()( 2  ,     (60) 

MeVnAnEn 460936452.2)(/)()(  .     (61) 
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Now, resting on the shell-nodal g-lepton structure of nucleons, we can proceed to derive 

the binding energy of deuterium and tritium regarding them as the junction, respectively, of 

two and three g-lepton systems (pairs) 

 

7. The binding energy of deuterium H2

1
 and tritium H3

1
 

At the joining of two H-atoms, of a neutron and the hydrogen atom H1

1
 (protium), the 

deuterium atom H2

1
 is formed. The process of joining results in the penetration of spaces of 

one nucleon into another, so that the partial overlapping of spherical shells of both nucleons 

occurs. With this, all g-lepton nodes (Fig. 8), filled with coupled g-leptons, of one nucleon 

and corresponding nodes of another nucleon draw together at the distance r defined by 

solutions of the wave equation (2) (i.e., by the roots of Bessel functions). As a result, 28 

helium structures on the basis of binding of approached pairs of coupled g-leptons, like that 

one shown in Fig. 9, are formed. 

 

 

Fig. 9. The helium structure formed on the basis of binding of two g-lepton nodes. 

 

The distance r between the nodes is defined by roots of Bessel functions 

krz nm , .       (62) 

The unknown value in this expression is the wave number k equal to the inverse value of the 

wave radius  , 

/1k .       (63) 

The wave radius   defines the characteristic radii of elementary spherical and cylindrical 

surfaces described by Bessel functions with zero and extremal values. As we saw above, at 

the nucleon level, 
ek /1 , where cme

810603886538.1   originates from the DM. The 

wave radius of the value 
e  is responsible for the arrangement of nucleons in atoms, and 

hence in crystals, molecules, etc. at the definite absolute distances. Accordingly, it is not a 

random coincidence that the wave diameter of 

cme

8102.32        (64) 

is equal, in average, to lattice parameters of crystals. Thus, the wave radius at the nucleon 

level n  is equal to (coincides with) the fundamental wave radius of exchange 
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een c  / ,       (65) 

it defines the principal parameters of atomic spaces. Note that 

ee me /         (66) 

is the fundamental frequency of exchange at the atomic and subatomic levels (the frequency 

of the “electrostatic field”). 

Obviously, spaces of the g-lepton level (we mean the internal spaces of nucleons) have 

another absolute value of the wave radius. The spherical space of a nucleon, like the spherical 

space of an atom, is also a system of wave shells, but its own whose relative size is defined 

by the relative radius nmzkr , . The internal proper shells of nucleons with its own 

nodes, where g-particles are localized, form the superfine discrete structure of atoms.  

Thus, we stressed again that solutions of the wave equation (2) give only the relative 

radius and hence, the relative value of the corresponding wave radius  . The absolute 

value of the latter one must seek from some conditions general for wave processes at 

different levels.  

We will define   from the scale analogy which exists between wave processes at any 

levels and, in particular, which must exist between ones at the nucleon and g-lepton levels. 

The matter is that the fundamental relations existed between the main wave parameters in 

both scales must keep. One of the fundamental relations exists between the radius of the wave 

spherical shell of a proton rp and the fundamental wave radius 
e  of exchange of the proton 

with other particles and the surrounding field. The theoretical radius of the wave shell of the 

proton (proton’s radius for short), obtained from the formula of mass at the condition 

1)( 2 perk  and 1 r , is 

cmmthr pp

83
1

0 10510578616.0)4/()(  .    (67) 

The fundamental wave radius is 

cmc ee

810603886538.1/  .      (68) 

The ratio of both magnitudes is equal, with some accuracy, to the fundamental constant , 

 141311617.3)(/ thrpe .     (69) 

This ratio shows that the wave radius e , in value, is a half of the length of the equatorial 

circumference of the wave spherical shell of a proton. Obviously, the same ratio must be 
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valid for the radius of the wave spherical shell of g-lepton, rg, and the wave radius of the g-

lepton level, g , so that we have the right to assume that 

)(/ thrgg .       (70) 

Hence, for  

cmmthr gg

83
1

0 10170370509.0)4/()(      (71) 

with gmg

2610214420763.6   (see (53)), the wave radius of the g-lepton level g is 

cmthrgg

810534.0)(  .     (72) 

Note that the mass of g-lepton is close to a quarter of the fundamental period D (in units of 

the electron mass) [7, 8]: 

eg mem 210)lg2(
45

1
       (73) 

We see that the value of g  obtained on the basis of a series of approximations is close 

to the Bohr radius cmr 8

0 10529.0  . It is quite possible that more accurate derivations will 

lead to the equality 0rg  . Thus, we cannot exclude the equality of the above parameters: 

of the Bohr radius and the wave radius of g-lepton level g , which both are the basic 

parameters of the wave sphere atomic space. 

Hence, taking the root of Bessel functions, 89357697.01,0,  yz nm , as in the case of the 

helium atom, we arrive at the following distance r between two pairs of g-leptons (see Fig. 9) 

in coupling nucleons: 

cmyr g

8

1,0 10477.0   .      (74) 

 

Fig. 10. The relative disposition of two nucleons in the deuterium atom H2

1
; 

0rr  . 

 

It means that wave spherical shells of two H-atoms in the deuterium H2

1
 are partially 

overlapped as is shown in Fig. 10 (where cmrp

81051.0   (67)). Centers of masses of two 

constituent H-atoms are at the distance cmr 810477.0  , which is some less than the Bohr 

radius, 0rr   . 
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At such conditions (distance r of the value (74)), the binding energy of internodal g-

leptons pairs (Fig. 9) is 

` eV
r

q
E

g

g

6

0

2

10070246848.0
8




 ,    (75) 

where 

1710161576228.1   sgmq egg     (76) 

is the exchange charge of the g-lepton, which is an elementary quantum of exchange at the g-

lepton level. 

According to the above definition (model), a proton has 28 g-leptons (14 nodes filled 

every with 2 coupled g-leptons). A neutron, in comparison with the proton, has one more g-

lepton located in the central polar node (see Figs. 6 and 7). Thus, because of all g-leptons take 

part in the exchange (interaction), we have 28.5 pairs of interacting g-leptons in H2

1
. Hence, 

the resulting binding energy, related to the internodal exchange (interaction) of all g-leptons 

belonging to two interacting nucleons, is 

MeVEE gexchg 002.25.28,  .     (77) 

The obtained value is close to the known value of 2.224 MeV (12) for the binding energy of a 

deuteron. It is the main (1st) but not alone constituent of the total binding energy of H2

1
 (as 

in the case of helium and carbon atoms considered above). By accepted analogy between 

wave processes at two levels under consideration (nucleon and g-lepton), we must take also 

into account (2nd) the energy of coupling of two g-leptons in their nodes and (3rd) the 

binding energy of g-lepton nodes with the shells where these nodes are located.  

However, we will not derive the rest (2nd and 3rd) constituents here. The derivation of 

the third one was carried out for helium and carbon atoms. A rough estimate of these 

constituents of the binding energy on the basis of the analogy between two-nodal structure of 

helium and two-nodal g-lepton helium structure (Fig. 9) will be quite sufficient here. 

In this connection, let us assume that the ratio existed between the total binding energy of 

helium He4

2
, 28.3 MeV, and its second constituent, the binding energy of coupled nucleons in 

its nodes (i.e., the binding energy of deuterium), 2.224 MeV, keeps the same and for the 

corresponding g-lepton helium structure shown in Fig. 9. In this case, because the total 

binding energy of all 28 g-lepton helium structures must be equal to 2.224 MeV (according to 

(12)), the binding energy of all g-lepton “deuterons” in all g-lepton nodes must be 

MeVEg 175.0)2(  .      (78) 

And the binding energy of one g-lepton “deuteron” is 
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keVg 25.62  .       (79) 

Hence, finally, we arrive at the following binding energy of H2

1
: 

)3()3()2(,

2

1 177.2)( gggexchg EMeVEEEHE  .    (80) 

Obviously, the contribution of the third constituent )3(gE , corresponding to the binding 

energy of all 28 g-nodes with their wave spherical shells will be less than the contribution of 

the second constituent estimated above. Therefore, we assume that after adding of )3(gE  to 

the total energy we will closer approach to the value 2.224 MeV, which follows from the 

formula on mass defect (12). 

In addition, let us proceed now to the derivation of the binding energy of tritium. The 

shell-nodal structure of three joined g-lepton nodes in tritium (belonging to three interacting 

nucleons), on the g-lepton level, recalls the nodal structure of helium isotope He6

2
 (Fig. 11). 

Appearance of two coupled g-leptons in the central polar node slightly changes (increases) 

the former equilibrium distance r existed between outmost pairs of g-leptons in the g-lepton 

helium structure shown in Fig. 9. 

The nearest to the cmr 810477.0   equilibrium distance between g-lepton nodes, 

admitted by solutions of the wave equation (2), is the distance equal to the wave radius of the 

g-lepton level, cmg

810534.0  . Therefore, we accept this value of the distance between 

the outermost g-lepton nodes in tritium (Fig. 11) for further calculations, so that we have 

cmr g

810534.0   , 

cmrr g

8

21 10267.02/   .     (81) 

We also assume that the exchange interaction in the presented structure exists between every 

two partially overlapped pairs as is shown conditionally by two arrows in Fig. 11. 

 

 

Fig. 11. The nodal structure of helium isotope He6

2
, and the local structure formed under the 

joining of three g-lepton nodes in tritium regarded as the p-n-n system. 
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The main constituent of the binding energy in this case, the energy of internodal exchange 

between two nearest nodes, is 

MeV
r

q
E

g

g 140493696.0
8 10

2




 .     (82) 

Hence, the total binding energy of internodal exchange, with allowance for all g-lepton bonds 

in tritium, is 

MeVENE gbondsgexchg 07838752.8,,  ,    (83) 

where 5.57, bondsgN  is the number of internodal g-lepton bonds (p-n and n-n, 28.5+29) in 

tritium consisted of two neutron and one proton. 

The second constituent, the total binding energy of all g-lepton “deuterons” in tritium, is 

(according to (79)) 

MeVNE gnodesgg 2625.02)2(   ,      (84) 

where 42143 nodesgN  is the number of completed polar-azimuth g-lepton nodes (or the 

number of coupled g-leptons). 

Without the smallest in value contribution of the third constituent Eg(3) (related to the 

binding energy of g-lepton nodes with the shells of their localization), we obtain finally the 

following magnitude  

MeVEEHE gexchg 34088752.8)( )2(,

3

1  .    (85)  

For comparison, the binding energy of tritium, originated from the formula (10), is 

MeVmcE 481821.82  .     (86) 

Thus, we have an approximate coincidence in the resulting data obtained by two ways 

different of principle. 

 

8. Interatomic bindings 

In accordance with the shell-nodal atomic model, we consider atoms as elementary 

quasi-spherical multiplicative molecules of the hydrogen atoms. The word “multiplicative” 

means that the particles (hydrogen atoms), constituents of these elementary molecules, are 

bound by the strong force (analogous in value to common “nuclear”). Accordingly, we call 

the intra-atomic internodal bindings by the word multiplicative.  

Ordinary molecules with relatively weak (chemical) bonds (analogous to cohesive or 

adhesive bonds), we call additive molecules. They are related to the electron level of binding. 
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For example, if deuterium D ( H2

1
), an isotope of the hydrogen atom containing two hydrogen 

atoms) is the multiplicative molecule then the hydrogen molecule (
2

1

1 H ) containing also two 

hydrogen atoms is the additive molecule. Accordingly, in the latter case we have relation with 

additive bindings.  

Therefore we should distinguish additive bindings from multiplicative bindings. Thus, in 

the light of the shell-nodal atomic model, elementary molecules of the hydrogen atoms and 

common molecules formed on their basis differ in principle by the different character of 

bindings in these molecules: intra-molecular (multiplicative) in the elementary molecules and 

intermolecular (additive) in the common molecules. 

Let us proceed now to estimating the electron level of the bindings, the level of additive 

bindings. The energy of electron binding is equal to 

eV
m

E
e

e
ee 49.4

8 0

2
2 





,      (87) 

where e is the fundamental wave radius defining the characteristic distances in wave atomic 

spaces,  

cm
c

e

e

810603886538.1 


 ,     (88) 

e is the fundamental frequency of the atomic and subatomic level, and 

1910702691627.1   sgemee     (89) 

is the minimal quantum of the rate of mass exchange, the electron exchange charge; 

3

0 1  cmg  is the absolute unit density. 

 The energy obtained, 4.49 eV, predetermines the electron work function of solids. For 

instance, the electron work function of mono- and polycrystals of Al, B, Bi, W, Fe, Co, and 

Cu is within eV67.425.4   [9, 10]. 

The energy (87) practically coincides with the dissociation energy of the molecules: H2 

(4.48 eV), HD (4.51 eV), HT (4.52 eV) and close to the dissociation energy of the molecules 

O2 (5.1 eV) and OH (4.4 eV) [11] (p. 425), etc. The energy of electron binding (87) correlates 

with the break energy of bindings in molecules and radicals. For instance, it is equal to 5.0 eV 

in reactions H2O  H + OH and N2O  NO + N; in NaOH  Na + OH, it is 4.8 eV. 

The binding energy (of the electron level) per mole of substance defines the 

characteristic break energy (dissociation) of chemical bonds, 

11

0

2

4492.1031211762.433
8

 


 molkcalmolkJN
e

E A

e

e 
  (90) 
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where NA is the Avogadro number.  

A definite energy is spent upon tearing off the hydrogen atom from a node of the 

improper shell. In accordance with the experimental data [9, 12], this energy is equal to 

1101 molkcal  for CH4 and 1104 molkcal for C2H4 that is consistent with the obtained 

value (90). Obviously, in a case of breaking of two bonds simultaneously, the break energy 

must be approximately twice as much. Actually, a breakdown of O2 molecule with two 

similar bonds requires about 117179  molkcal . The additive bindings (of the electron 

level) show its worth in the molar heat capacity of molecules and other phenomena 

considered in detail in [1]. 

 

9. Conclusion 

Thus, the shell-nodal atomic model on the basis of a unified theoretical concept of the 

wave exchange interaction reveals the nature and mechanism of multiplicative (called in 

modern physics “nuclear”) and additive (“chemical”) bindings.  

If we will assume that external and internal spaces of hydrogen atoms are delimited by 

the Bohr radius r0 = 5.291772083·10
–9 

cm, so that the mass of the hydrogen atoms calculated 

from the formula of associated mass,
2

0

2

0

3

0

1

4

rk

r
m

e


 , is equal to mH = 1843.524607 me. 

The rate of mass exchange (or, in other words, exchange charge of the hydrogen atom) 

responsible for internodal bindings between atomic constituents, the hydrogen atoms, is equal 

to 

1610138953779.3   sgmq HeH .    (91) 

The rate of mass exchange of such a value determines the high stability of individual atoms. 

Actually, the energy of interchange (interaction) of two separate hydrogen atoms (situated in 

two conjugated nodes of the same atom) being apart at the distance r = 1.40·10
–8 

cm (that is 

the length of double bindings in graphite, see Figure 8 in L. 6), is equal to 

MeV
r

q
E H 478.17

8 0

2




 .      (92) 

This value correlates with the experimental data for the binding energy of neutron in a 

carbon nucleus and with the threshold energy of (, n) reactions [11] equal to 18.7 MeV. If we 

shall take the length r = 1.31·10
–8

 cm quoted from [13], corresponding to the isolated double 

binding in C = C = C and CH2 = C = O structures, the obtained internodal energy of 

interaction of constituent hydrogen atoms of 18.679 MeV (following from Eq. 92), will 

practically coincide with the above threshold energy of (, n) reactions. Accepting r = 

1.15·10
–8 

cm (indicated in brackets in Figure 8 of L. 6), we arrive at the energy E= 21.4 MeV 
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that is close to the threshold energy 20.3 MeV of (n, 2n) reactions in C12

6  isotope [11] (p. 

887), etc. 

The energy of interchange (interaction) of two separate hydrogen atoms situated in two 

conjugate nodes of the same atom being apart at r = 1.45·10
–8

 cm is equal to 16.875 MeV. 

The taken distance r is the length of a single binding between the internal nodes 1 and 2 (see 

Figures 6 and 8a in L. 6). This distance is also equal to an averaged characteristic length of 

different bindings with participation of oxygen (S – O, C – O, N – O, B – O, etc. [13]). The 

obtained energy correlates with the experimental value for the binding energy of neutron in 

an oxygen nucleus and with the threshold energy of ( n, ) reactions in the nucleus, equal to 

16.3 ± 0.4 MeV [11].  

The shell-nodal atomic model allows understanding the physics of atomic reactions 

caused by an inelastic interaction with matter of high-energy particles. The d-, p-, and n-

emanation occur when nodal hydrogen atoms are removed from their nodes for some reasons. 

The main “structural” units of the shells are bound pairs of nearest potential nodes filled 

with coupled hydrogen atoms (representing by themselves deuterons) belonging to two outer 

shells. As outgoing important elementary parts of atomic shells, these two strongly bound 

nodes, completed each with two hydrogen atoms, form -radiation.  

A “splitting off” of external shells of heavy atoms with the formation of lighter elements 

takes place under powerful impact. “Elementary” splinters, such as p, n, and t ( H3

1
), appear 

in such cases as well. 

Thus, the obtained results justify in favor of the validity of conceptually a new basic 

physics theory developed as an alternative to the Standard Model. Concerning hierarchy of 

particles beginning from an electron up to a nucleon, considered in Lectures 11-13 of Vol. 3, 

we can add the following. 

As was discussed earlier in Vol. 3, it is possible to suppose that electron at the g-level is a 

very miniature nucleon. Then g-lepton, judging from its reference mass mg=68.22me, 

represents a composite atom-molecule of the electron level with the ordinal number 32z   

(if we shall rely on the wave equation in the g-lepton space). Indeed, an atom of the periodic 

table at the nucleon level with the mass number more than 68 (“more”, because we must take 

into account the binding energy of g-leptons) corresponds rather to 32Ge, than 31Ga, with the 

mass numbers of the stable isotopes within 70-76. Moreover, the germanium atom is in the 

same 4th group of the periodic table as the silicon atom, which is an analogous of nucleons at 

the g-lepton level. 

In that case, it is possible to say that all elementary particles consist finally of electrons. 

The relation of radii of the electron and g-lepton spheres makes it possible to give one more 

prediction: the spectrum of particles with measures beginning from the electron to g-quantum 

masses (the constituent of the vast variety of e-class particles) also exists in nature. The last is 
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the most probable. Therefore, as we already stated in Vol. 3, electrons as elementary particles 

are at the end of a hierarchical chain of e-class microobjects. 
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