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Abstract 
 

Derivation of binding energy of nucleons in deuterium, tritium, helium He4

2
, 

and carbon C12

6 atoms on the basis of shell-nodal atomic model and dynamic 

model of elementary particles is presented in this paper. It is shown that the 

internal structure of nucleons at the level of constituent g-particles recalls the 

shell-nodal structure of silicon of the nucleon level. Binding energies 

calculated well agree with the binding energies estimated from the mass-energy 

equation as the mass defect.  
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1. Introduction 
 

Shell-Nodal Atomic Model (SNM) allows explaining the structure of 

matter at atomic and subatomic levels in a more logical and simple way. 

Different sides of the model were already published [1 - 4] or are in printing 

being accepted for publication [5, 6]. The model is based on particular 

solutions of ordinary wave equation in spherical polar coordinates and on the 

Dynamic Model of Elementary Particles (DM) [7]. 

As follows from the SNM, atoms recalls molecules if one judges on their 

internal structure. Their discrete points-nodes are the places of location of 

nucleons, at least by two per node. Nucleon nodes are located on spherical 

atomic shells radius of which is defined by roots of Bessel functions [8]. The 

main features of SNM are presented here, in introduction, very concisely. In 

spite of this, the reader will be able to understand in outline origination of the 

intra-atomic shell-nodal structure and the derivation of binding energy of atoms 

on the basis of the SNM without turning to references. 

The wave function ̂ , 
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contains spherical harmonics 
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where Cl,m and Cm are coefficients depending on the normalizing conditions, 

Pl,m(cosθ) are Legendre adjoined functions, )(m  are azimuthal functions,  

is an initial phase of the azimuthal state, 
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is the wave number. 

The difference between solutions of ordinary wave equation (1.2) and the 

Schrödinger’s wave equation [9] is defined by the difference in radial 
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equations (because of the different wave numbers k), which yields the different 

radial solutions )(ˆ krRl . Schrödinger’s radial equation and its solutions are 

analysed in detail in [10, 11].  

At integer values of the wave number m, the particular solution of the wave 

equation (1.2) has the standard form. If we present the number m in the form 

sm 2
2

1
 , where Ns , we arrive at 
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N ) are the Hankel, Bessel and Neumann functions, correspondingly.  

The form of the function (1.6) uniquely shows that it describes the 

kinematic structure of standing spherical waves in wave physical space. Thus 

the solution (1.6) yields the spatial geometry of disposition of specific points 

(nodes and antinodes) in which the wave ̂ function takes the zero and 

extremal values. With this, polar-azimuthal functions, potential and kinetic, 

define the angular spatial coordinates, respectively, of nodes and antinodes of 

the standing spherical waves. 

Two terms in (1.6) are the potential and kinetic spatial constituents of 

the ̂ -function; they have the following form 
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 The half-integer solutions of (1.2), at sml )2/1( , have the form 
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All spatial components are determined with the accuracy of a constant 

factor A, imposed by boundary conditions, which have no influence on the 

peculiarity of distribution of the nodes on radial spheres. The superposition of 

even and odd solutions defines the even-odd solutions. Odd solutions describe 

the nodes, lying in the equatorial plane of atomic space. In this plane there are 

also solutions in the form of rings in space (graphically shown further) 

separated by radial unstable shells. 

̂ -Function represents any parameter of the wave field such as, for 

example, potential-kinetic displacement, potential-kinetic speed, physical 

potential-kinetic probability, etc. 

The radial component )(ˆ krRl  of the wave function ̂  (1.1) describes the 

radial field of displacements of the wave parameter, which the ̂ -function 

represents in the wave equation (the density of potential-kinetic phase 

probability, in the work [12]), the polar component )(,  ml  describes the polar 

displacements, and )(ˆ m  describes the azimuth displacements. 

The potential solutions define the coordinates of rest, whereas the 

conjugate kinetic solutions define the coordinates of maxima of motion. Thus, 

the potential solutions give us the spatial coordinates of equilibrium domains 

(nodes of standing spherical waves) in the wave atomic space.  

Thus, we should distinguish two solutions, potential and kinetic, do not mixing 

them [13]. Rest and motion (nodes and antinodes) are the two qualitatively 

different states. Kinetic harmonics are the same, in form, as potential 

harmonics, but they are displaced in space in the radial direction and turned in 

the azimuthal direction, around the z-axis, with respect to potential harmonics 

(just like mcos  with respect to msin  in (1.3)) so that the kinetic extrema 

are between the corresponding potential extrema (as alternated nodes and 

antinodes in standing waves). 

The form of the radial equation and its solutions )(ˆ krRl  depend on the 

concrete problem, which imposes the definite requirements on the wave 

number k. However, for any model of an object of study, the radial solutions 

define the characteristic spheres of extrema and zeros of the radial function. 
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For a variety of problems, it is sufficient to know at most that such 

characteristic spheres exist.  

Evidently, the polar-azimuth equation is common (universal) for all 

spherical objects if they are described by the general wave equation (1.2).  

Radial solutions )(ˆ krRl entered in (1.5) are defined by roots of Bessel 

functions [8]. They give the equilibrium spherical shells of standing spherical 

waves in the wave field of potential and kinetic displacements.  

Polar-azimuthal functions of (1.5) define polar-azimuthal coordinates of 

nodes and antinodes of standing spherical waves, located on these shells.  

Polar components )(,  ml  of the ̂ -function (1.1) define characteristic 

parallels of extrema (principal and collateral) and zeros on radial spheres 

(shells). Azimuthal components )(ˆ m  define characteristic meridians of 

extrema and zeros. Potential and kinetic polar-azimuthal functions ),(ˆ
,  ml  

select together the distinctive coordinates of extrema and zeros on the radial 

shells. 

The geometry of characteristic states on radial shells is expressed by 

extrema and zeros of the polar-azimuthal components of the ̂ -function. The 

potential solutions of the ̂ -function (for 5,4,3,2,1,0l ) are depicted 

graphically in Fig. 1.1 for a constant value of the radial coordinate r. In this 

figure, with an example for 5l  and 2m , it is also showed how the 

presented discrete (nodal) structure of the three dimensional wave space is 

obtained from the aforementioned solutions for the different wave numbers l 

and m.  

The graphs of the solutions indicate that there are principle (designated in 

Fig. 1.1 by shaded points) and collateral (designated by the smaller 

unnumbered hollow points) extrema, which determine, correspondingly, stable 

and metastable states of probabilistic events.  

Principal potential polar-azimuthal nodes are numbered in Fig. 1.1 by 

ordinal numbers. The principal polar-azimuth extrema (potential and kinetic, 

0m ) mainly define the geometry of radial shells of atomic space, whereas 

collateral extrema ( 0m ) play the secondary role. Both principal and 

collateral extrema are points-nodes of the steady-state discrete geometry of the 

wave field of matter-space-time of atoms. 
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Fig. 1.1. Spatial solutions   CosmRC mllpml )()(),,( ,,  (for 

constr  ) of the wave equation (1.2) for spherical standing waves presented in 

the form indicating the space distribution of potential extrema-nodes (discrete 

elements of the shell-nodal structure of atoms); numbers 1, 2, 3, …, 110 are the 

ordinal numbers of the principal potential polar-azimuth nodes coinciding with 

atomic numbers of the elements Z [1]. 
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As it turned out, the shell-nodal structure, presented in Fig. 1.1, is 

reminiscent of spherical resonant cavities [14] (described by Bessel functions 

as well) having internal oscillating electric and magnetic mode fields. And 

what is more, as appears from the comprehensive analysis, all types of 

elementary crystal lattices represent, in essence, elementary nodal structure of 

standing waves in a limited three-dimensional wave physical space [1, 6]. 

Thus, the spatial shell-nodal structure presented in Fig. 1.1 uniquely 

determines the structure of matter at the atomic and molecular levels, in 

particular, the intra-atomic structure and the structure of crystals.  

The quasi-similarity of the geometry of external shells, for the same 

quantum number m and different quantum numbers l, clearly seen from Fig. 

1.1, reveals the nature of Mendeleev’ Periodic Law [5, 15]. A great body of 

other important consequences, originated from the above solutions, relates to 

the new data concerning the atomic structure, periodicity, symmetries, the 

nature and structure of isotopes [16], etc. These and other relevant data one can 

find in the reference works of the author.  

 

 

2. The shell-nodal structure of helium He4

2
, and carbon C12

6  

 

The completely realized polar-azimuthal n-th potential shell (with potential 

nodes) is defined, in accordance with (1.2), by the function 
 

)cos()()(),,( ,,,,    mRC mlnllpnlml ,  (2.1) 

 

where nl ,  is the relative radius of the n-th external radial shell. The geometry 

of angular disposition of nodes is determined by polar-azimuthal functions 

)cos()(,   mml  of (2.1). The latter and their sections are presented in Fig. 

2.1 for hydrogen, helium, and carbon atoms. In the case of carbon atom, two 

configurations of functions,  cos)(1,1  and )2/cos()(1,1   , different 

by initial azimuthal phases ( 0  and 2/  ), are shown in Fig. 2.1. The 

octahedral structure ( 2/  ) is realized in the diamond structure of carbon. 

The nodal structure of He4

2
 and C12

6 , originated from (2.1), is conditionally 

shown in Fig. 2.2. The carbon’s nodal structure is depicted with the plane 

disposition of its six principal polar-azimuth nodes ( 0 ). All principal 

polar-azimuthal nodes in the stable isotopes, which are presented in this figure, 

are filled with paired nucleons - say H-atoms (to which we refer the hydrogen 
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atoms, protons and neutrons). Polar nodes are situated at the polar azis z, 

forming something like “spinal” of atoms. 

The nodal structure of carbon isotope C12

6  and its polar-azimuth functions 

are shown also in Fig. 2.3. The carbon atom has the central empty node (m = 0, 

l = 0) and four spherical shells: two shells (m = 0, l = 1, 2) with four empty 

potential-kinetic polar nodes (situated along the z-axis) and one ring, two 

shells ( 2,1;1  lm ) with six completed potential polar-azimuth nodes and 

six empty kinetic polar-azimuth nodes (the lasts are shown neither in Fig. 1.1 

nor in other figures). 

 

 

 

 
 

 

Fig. 2.1. The structure of potential polar-azimuthal functions (integer solutions) 

for hydrogen 1H, helium 2He, and carbon 6C. 
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Fi.2. 2. The nodal structure of helium He4

2
 and carbon C12

6 . 

 
 

 
 

Fig. 2.3. Plots of potential polar-azimuth functions  mml Cos)(,  ( 2,1,0l ; 

1,0 m ) (a), their extremal points on radial extremal shells )(lR  (b), and 

the symbolic designation of carbon 6C (c). 

 

Six potential polar-azimuth nodes (at 1m ), completed every by two H-

atoms, lie in one plane: two potential nodes are in the inner shell (l = 1) and the 

four ones are in the outer shell (l = 2). Six empty kinetic nodes (not shown 

here) lie in a perpendicular plane with respect to the plane of disposition of 

potential nodes, on kinetic radial shells. 
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Hydrogen is mainly in coherent states in Nature, in particular, in the form 

of coupled atoms – hydrogen molecules H2. Paired H-atoms, filling polar-

azimuth nodes, apparently provide for the stable state of atomic shells. The 

condition of coupling, observed in nature, is inherent not only for H-atoms in 

nodes of individual atoms, but probably also for individual atoms themselves in 

solids, liquids, and molecules built on their basis. 

The distance r between nodes is defined by roots of Bessel functions 

krz mn , , as follows from solutions (1.6) of the wave equation (1.2). 

The derivation of binding energy of nucleons, located in nodes of atoms, 

rests on the Law of Universal Exchange, which originates from the Dynamic 

Model of Elementary Particles (DM) [7]. Therefore, we will recall now the 

main features of the DM and show the formula of exchange used for 

calculations of binding energies here. 

 

 

3. Dynamic model of elementary particles; the law of central 

exchange 
 

We regard elementary particles as dynamic spherical formations of a 

complicated internal structure being in dynamic equilibrium with environment 

through the wave process of the definite frequency e

atomic and subatomic levels [7]. Longitudinal oscillations of their spherical 

wave shells in the radial direction provide an interaction of the particles with 

other objects and the ambient field of matter-space-time. The logical triad: 

matter-space-time expresses an indissoluble bond of matter, space, and time 

(incessant wave motion).  

The wave shell, or in another words, the characteristic sphere of an 

elementary particle restricts the main part of the particle from its field part 

merging gradually with the ambient field of matter-space-time. The main part 

(core) is the basis of the particle, whereas the field part represents its 

superstructure. Such a model interprets an elementary particle as a particular 

pulsing physical point (like a micropulsar) of an arbitrary level of matter-

space-time, restricted by the characteristic wave sphere and being in rest in the 

field-space.  

The existence and interactions of the particles are, in essence, a continuous 

process of wave exchange of matter-space-time. The wider (and, hence, truer) 

notion exchange is thus more correct because it reflects behavior of elementary 

particles in their dynamic equilibrium with the ambient field, at rest and 



http://shpenkov.com/pdf/stronginteraction.pdf 11 

motion, and interactions with other objects (and particles themselves). In other 

words, the notion exchange is more appropriate from the point of view of the 

physics of the complex behavior of elementary particles viewed as dynamic 

micro-objects belonging to one of the interrelated levels of the many-level 

Universe.  

The ratio of mass dm and volume dV of elementary particles defines their 

absolute-relative density : 
     

rdVdm  0/ ,   (3.1) 

 

where 3
0 1  cmg  is the absolute unit density, and r is the relative density. 

Masses of all dynamic formations (micro-particles) in the Universe, 

according to the DM, have associated field character with respect to the deeper 

level of the field of matter-space-time; therefore, their own (proper, rest) 

masses do not exist. Associated mass, or briefly the mass of the particle is 

defined from the formula 

    
22

0

3

1

4

rk

r
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e

r


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
,   (3.2) 

 

where r is the radius of the wave shell; 
 

    ck ee //2     (3.3) 

 

is the wave number corresponding to the fundamental frequencies e of the 

field of exchange, which is characteristic for the atomic and subatomic levels 

of the Universe.  

The speed of wave exchange is presented in the form 
 

    tiekr  )(ˆ ,    (3.4) 
 

The volumetric rate of mass exchange of the particles with environment 

called the exchange charge, or merely the charge, is defined as 
 

     ˆ/ˆˆ SdtmdQ ,   (3.5) 
 

where S is the area of a closed surface separating the space of an elementary 

particles from the surrounding field of matter-space-time, υ is the speed of 

wave exchange (interaction) at the separating surface. Strictly speaking, the 
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exchange charge is the measure of the rate of exchange of matter-space-time, 

or briefly the power of mass exchange. In this wider sense, the area of 

exchange S does not necessary concern the closed surface. The symbol “^” 

expresses the contradictory (or complex) potential-kinetic character of physical 

space-fields [17, 18]. 

Derivations carried out in [1, 7] have shown that the charge of exchange Q̂  

has the active-reactive character. It is defined as 
 

  raeee

e
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are active and  reactive charges, correspondingly. 

The active component Qa defines the dispersion during exchange, which in 

a steady-state process of exchange is compensated by the inflow of motion and 

matter from the deeper levels of space.  

We see that the reactive component of charge Qr, called in contemporary 

physics the “electric” charge (further for brevity, the charge of exchange Q) is 

connected with the associated mass m (3.2) by the relation 
      

emQ  .    (3.8) 
 

From (3.8) it follows that the dimensionality of the exchange charge is 1 sg . 

Thus, the DM reveals the physical meaning of the electric charge. The 

exchange (“electric”) charge is the measure of the rate of exchange of matter-

space-time, or briefly the power of mass exchange; its alternative value 

changes with the fundamental frequency e. 

The derivation carried out first in [19] (details one can find in [7], see also 

[20]) leads to the following formula of correspondence between exchange 

charge Q and Coulomb charge qC: 
 

    04 CqQ .   (3.9) 
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We recall, here and further in the DM, 3
0 1  cmg  is the absolute unit 

density. Hence, the exchange (reactive) charge of an electron at the level of the 

fundamental frequency e is 
 

  19

0 10702691627.14   sgee C
,  (3.10)  

 

where qC CGSEe 10
10803204401.4


  is the Coulomb charge of an electron in 

CGSE system of units. The dimensionality of the unit 1CGSEq is actually 

expressed by fractional powers of absolute units of matter and space of CGS 

systems, 
12

3
2

1
 scmg , that has no physical meaning. An introduction of the 

SI unit of the electric charge, 1 Coulomb, did not change the situation, because 

the dimensionality of the charge is actually, as before, expressed by fractional 

powers of the units of matter and space, 12
3

2
1

 smkg  [21].  

The exchange charge of the value (3.10) (electron charge) represents an 

elementary quantum of the rate of mass exchange. On the basis of (3.8) and 

(3.10), knowing the mass of the electron me, we found the fundamental 

frequency of the wave field of exchange at the subatomic level 

 

   11810869162505.1/  sme ee .  (3.11) 
 

It is the frequency of the field called in modern physics “electrostatic”. Note in 

this connection that there are no “static” fields in the Universe where all is in 

incessant wave motion. 

The radius of wave shells of particles r is derived from the formula of mass 

(3.2), where 1r , eek /1 , with 
  

   cmc ee

810603886538.1/     (3.12) 
 

Thus, the notion rest mass of elementary particles is not valid of principle 

for the DM. Accordingly, one could conclude that the rest mass of elementary 

particles does not exist. The associated nature of mass, as the field mass of the 

central wave exchange, naturally originates from this model. Moreover, in the 

DM, particles are boundless in size. Characteristic spheres (wave shells) of the 

particles restrict only their inner and external spaces. According to the 

definition, geometrical space (spherical volume) of an elementary particle, 

restricted by its wave spherical shell, is the external world of the particle.  



http://shpenkov.com/pdf/stronginteraction.pdf 14 

From the above it follows that the physical field-space of the Universe 

represents by itself an infinite series of spaces embedded in each other 

[recalling a set of nesting dolls, or infinite functional series 





1
)()(

k k xuxf ]. 

This series of spaces expresses the fundamental concept of natural philosophy 

concerning the infinite divisibility of matter. Every level of space is the basis 

level for the nearest above situated level and, simultaneously, it is the level of 

superstructure for the nearest below-situated level. This means that above-

situated field-spaces are formed on the basis of below-lying field-spaces. 

Accordingly, there is no meaning to the concept of “very last elementary 

particle” in the common classical sense of this phrase. 

As follows from the DM [7], the law of central exchange has the form 
 

2

0

212

4 r

mm
F


 ,   (3.13) 

 

where  is the fundamental frequency of exchange, m1 and m2 are associated 

masses defined by (3.2), 3

0 1  cmg  is the absolute unit density. This law 

lies at the foundation of nature. If 
e  (3.11), this law describes exchange 

(interactions) at the atomic and subatomic levels: 
 

2

0

212

4 r

mm
F ee


 .   (3.14) 

 

A particular case of the law (3.13) is the law of universal gravitation, which 

we present in the form 

2

0

212

4 r

mm
F gg


 ,   (3.15) 

 

where g is the fundamental frequency at the gravitational (mega) level of the 

Universe, i.e., the fundamental gravitational frequency. Its magnitude, defined 

on the basis knowing the value of the gravitational constant 
2138106742.6   sgcmG , is equal to 
 

14

0 101581.94  sGg
.  (3.16) 

 

The existence of the gravitational frequency g and, hence, the 

corresponding gravitational radius of elementary particles 
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Mkmc gg 35.327/   shows the indissoluble bond of micro- and mega-

objects of the Universe in the unit complex of the Infinitely Small and 

Infinitely Big, as the coexisting polar oppositions.  

According to the DM, and the law of the universal exchange (3.14), the 

energy of exchange (interaction) of particles is defined, at atomic and 

subatomic levels, by the formula 
 

r

mm
E e

0

212

8
 ,   (3.17) 

where 
11 qme   and 

12 qme   are exchange charges of interacting particles. 

We will use juct this formula at the derivation of internodal binding energies of 

nucleons in atoms. 

 

 

4. The binding energy of helium He4

2
 

 

The binding energy of nucleons in atoms is attributed to three causes and 

consists of: 

(1) the binding energy of paired nucleons in nodes, i.e., in essence, it is the 

energy of deuterons; 

(2) the binding energy of nucleon nodes with atomic shells to which these 

nodes belong; and 

(3) the energy of internodal exchange (interaction) of nucleons. 

The derivation of the first constituent of the binding energy on the basis of 

the DM and SNM with use of (3.17), we will consider latter at the derivation of 

the binding energy of deuterium. Here, in order to take into account the binding 

energy of deuterium, we will use the value obtained from the mass defect 

formula: 

mcE  2     (4.1) 
 

A deuteron is the nucleus of a deuterium atom, and consists of one proton 

and one neutron. The mass of the constituents is 
 

amumm np 015941.2008665.1007276.1  .  (4.2) 
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The atomic mass of the deuteron D (
2
H) is 2.013553 amu; hence, the mass 

difference is amum 002388.0 . Thus, according to (4.1), a deuteron’s 

binding energy is 

MeVmcED 224.22  .   (4.3) 

 

The second constituent of the binding energy is defined from the following 

conditions. In a spherical atomic field, radial amplitudes of oscillations of H-

units in nodes of the n-th atomic shell are determined by the expression 

      

krkreAA ls /)(ˆˆ     (4.4) 

originated from solutions of (1.2) for the radial function )(ˆ krRl  [1]. Then, the 

energy of oscillations takes the form: 
 

)(
2

)(
22

1

2

2

2

22

2

2222

kre
r

Acm
kre

kr

Am
h

Am
E l

p

l

psp

s 










 , (4.5) 

 

where mp is the mass of H-unit. Obviously, that 
 

)(
2

)(22 2

2

2

2

kre
kr

cAm
kre

kr

A
mAmh l

p

lpssp











 ,  (4.6) 

 

where   

 )()(
2

)(ˆ)(
22

2
1

2
1 krYkrJ

kr
krekre llll  


,  (4.7) 

 

)(
2

1 krJ
l

 and )(
2

1 krY
l

 are the Bessel functions. 

At 0n , in the wave zone ( kr  1), we have 
      

0

2 /2 rcAmh p .   (4.8) 

 

From this, we define the constant A: 
 

    
cm

hr
A

p


2

0 .    (4.9) 
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In the wave zone, er 0 , then assuming that the radial action for the mass mp 

is epmh  2 , we arrive at 

 

   
ccm

hr
A e

p





 

2

0 .   (4.10) 

 

If one assumes further the speed υ to be equal to the Bohr speed, the constant A 

takes the value of 
 

   cmA 910370113189.1  .   (4.11) 

 

Accepted suppositions lead to the following energy of the H-unit in a node, at 

up mm  (atomic mass unit):  

 

 
22

)()(
)(

)(22

2222

2

2

2222

2
1

2
1 Am

kr

krYkrJ
kre

kr

AmAm
E ull

l
usu

s











. (4.12) 

 

At the level of the fundamental frequency e, we have 
 

   keV
Am

w eu

u 72.3398
2

22




   (4.13) 

and 

   )(
2

,

2

2

,

22

sll

sl

useu
s ze

z

wAm
E 


 ,   (4.14) 

 

where krz sl ,  is the root of Bessel functions [8] . 

The binding energy (4.14) is only an estimation of the bond of an atomic 

shell with the n-node, because it was obtained on the basis of a series of 

suppositions, which should be regarded as preliminary axioms. A transition 

from one n-shell into another is defined by the energy of transition: 
 

   















2

,

,

2

2

,

,

2 )()(

nq

nqq

mp

mpp

us
z

ze

z

ze
wE .  (4.15) 
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The root 89357697.01,0,  yz sl  defines the equilibrium distance 

 

cmyr eHe

8

1,0 10433196073.1     (4.16) 

 

between two polar-azimuthal nodes on the external atomic shell of helium 

He4

2
 (see Fig. 2.2).  Hence, according to (4.14), the binding energy of a 

nucleon node with the atomic shell in helium is 
 

MeVye
y

w
E u

shell 92109.3)( 1,0

2

02

1,0

 .  (4.17) 

 

The third constituent of the binding energy of helium, the energy of 

internodal exchange, is determined by the formula (3.17). The quantum of 

internodal nucleon exchange, 
emq  , under formation of internodal bonds at 

the nucleon (“nuclear”) level, is the nucleon’s exchange charge. It means that 

the exchange charge of two such quanta maximum, by one per every node 

(proton’s or neutron’s exchange charge), can take part in the internodal 

exchange. Then, at 
Herr   (4.16), 11810869162505.1  se , and the proton’s 

exchange charge epp mq  , where 

 

    gmmm p

24

21 1067262171.1    (4.18) 

 

is the associated mass of a proton, we have the energy of exchange (per two 

pairs of nucleons) 

MeV
r

m
E

He

p

eexch 91883553.16
8 0

2

2 


 .  (4.19) 

 

Hence, the exchange binding energy per nucleon is 
 

   MeVEE exchnexch 229708883.44//  ,   (4.19a) 

 

and per single internodal nucleon bond (pair),  
 

MeVEE exchbexch 459417765.82//  .   (4.19b) 
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For estimation, we take into account the double bond between nodes in 

helium-4 realized by the elementary quantum of internodal nucleon exchange. 

It means that two pairs of nucleons participate in the internodal bond, so that 

the whole value (4.19) must be taken in this case. 

As a result, the binding energy of helium atom He4

2
 obtained as the sum of 

three constituents: (4.3), (4.17), and (4.19), is defined by the expression 
 

exchshellDatomHe EEEE  22,   (4.20) 

and equal to 
 

 .209.2991883553.1692109.32224.22, MeVE atomHe   (4.21) 

 

In the shell-nodal atomic model there is not such a notion as a nucleus. The 

value (4.20) was obtained for the helium atom as a whole independently of an 

existence of two electrons in the helium atom. The contribution of two 

electrons in the binding energy is insignificant. The energies of electron bond 

with proton (ionization energies) and of interelectron exchange (interaction) 

are very small in comparison with the energy of internucleon exchange. 

Actually, according to the formula of exchange (3.17), we have 
 

eV
r

m
E

He

e

eexche 24.5
8 0

2

2 


 ,  (4.22) 

 

where 1910702691627.1   sgemee  is the exchange charge of an 

electron. The energy obtained naturally defines the difference between the two 

energies of ionization of the helium atom: 

 

eVeVEEE ionionbonde 24.5)18.4942.54()1()2(  . (4.23) 

 

Thus, finally, at the subtraction of energy of two electrons 222 cmE ee   

from (4.21), the binding energy of helium ion 24

2

He  (“nucleus”) is 

 

MeVEEE eatomHeionHe 187.28510998902.02209.292,,  . (4.24) 

 

If we substitute the neutron’s mass gmn

241067492728.1   in place of 

mp in (4.18), we will arrive at 
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MeVE ionHe 23.28,  .    (4.25) 

 

Resulting magnitudes, (4.24) and (4.25), almost coincides with the binding 

energy 
  

MeVmcEHe 3.282     (4.26) 

 

obtained for the helium nucleus on the basis of the formula on the mass defect. 

 

 

5. The binding energy of carbon C12

6  

 

Basing on solutions of Eq. (1.2), we must take into account only those 

shortest internodal bonds in the carbon atom C12

6  which distinguish by the 

shortest distances between wave shells of internodal nucleons. Angular 

directions of such bonds are in more or less extent conditioned by the space 

geometry of polar-azimuthal functions (see Fig. 2.1, 2.2, and 2.3). Only along 

these directions shown in Fig. 5.1a the chemical bonds between nucleon nodes 

of different atoms are realized at formation of molecules and crystals [4].  

 

 

 
 

Fig. 5.1. The geometry of internodal nucleon (“nuclear”) bonds in the carbon 

C12

6  atom (a) and characteristic internodal distances (b) (between their centers) 

defined by the roots of Bessel functions.  
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Five internodal bonds responsible for the binding energy in the carbon 

atom have the same length 
01 7.2 rr   (where r0 is the Bohr radius), defined by 

the root of Bessel functions 1,0y  (as in the case of the helium atom): 

 

89357697.01,0 y , cmyr e

8

1,01 10433196073.1    

 

All other characteristic internodal distances in the carbon atom, shown in 

Fig. 5.1b, are not arbitrary as well. They are defined, as r1, by the roots of 

Bessel functions. This is justified by regularities of wave processes, described 

by the Bessel functions, that influences the strictly definite structure of the 

material spaces at all level: 

 

57079633.1
1,

2
1 y  cmyr e

8

1,
2

12 10519379088.2      

 

40482556.21,0 j  cmjr e

8

1,03 10857067342.3    (5.1) 

 

84118378.11,1 j  cmjr e

8

1,14 10953049879.2    

 

As in the case of the helium atom, three constituents of the binding energy 

must be taken into account. The first one, considering the coupling of two 

nucleons in a node in the form of deuteron, gives us the deuteron’s binding 

energy ED of 2.224 MeV (4.3) per node. 

The second constituent of the binding energy takes into account the bond of 

a node with the atomic shell where this node is located. According to (4.14) 

and (4.15), for the 1st and 2nd nodes (Fig. 5.1) situated at the internal atomic 

shell (the shell of helium), we have 1,0, yz ml   and MeVE shell 92109.3int,   

(4.17).  

Transitions of nucleons from the internal shell to the external shell, where 

four nodes are located, are defined by the formula of energy of transitions 

(4.15). For 1,0, yz mp   and 
1,

2
1, yz nq  , we have MeVEtrans 54363.2 . The 

binding energy for every of four nodes of external shell is 
 

MeVye
y

w
E u

shellext 37745.1)(
1,

2
1

2

2
12

1,
2

1

,  .  (5.2) 
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The third constituent of the binding energy of the carbon atom C12

6 , the 

energy of internodal exchange, is determined by the formula (3.17). According 

to the latter, an elementary binding energy, caused by exchange interaction 

between two nodes a distance r1 apart, is 
 

MeV
r

m
E

p

eexch 91883553.16
8 10

2

2 


   (5.3) 

 

(as in the case of the helium atom (4.19)).  

The exchange energy (5.3) (of the quantum of nucleon exchange 

epp mq  ) of the 1st node (Fig. 5.1a) expends on three equal bonds with 2nd, 

3rd, and 5th nodes; and the 2nd node, with 1st, 4th, and 6
th

 nodes. Hence the 

binding energy per node (we mean 1st and 2nd nodes here) is 
 

nodeMeVEE exchexch /639611843.5)3/1(1,  . (5.4) 

 

Every node of the 3rd, 4th, 5th, and 6th nodes are connected only with one 

node (1st or 2nd). Hence, the binding energy per node (for nodes from 3rd to 

6th) is 

nodeMeVEE exchexch /459417765.8)2/1(2,  . (5.5) 

 

Thus, we have the following internodal binding energies between the nodes 

of the numbers 

(1-2):   

bondMeVEE exchexch /27922369.112 1,21,  ;  (5.6) 

 

(3-1), (5-1), (4-2), (6-2): 

bondMeVEEE exchexchexch /09902961.142,1,13,    (5.7) 

 

Thus, the total energy of internodal exchanges is 
 

MeVEEE exchexchexch 67534212.674 13,21,int,   .  (5.8) 

 

A resulting sum of all constituents of binding energy of the carbon atom 

C12

6 , calculated for qp: (4.3), (4.17), (5.2), and (5.8), is 
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MeVEEEEE exchshellextshellDatomC 37132212.94426 int,,int,,  . (5.9) 

 

(Calculations for the exchange charge of a neutron 
enn mq   give 

94.48781375 MeV). 

At subtraction of the energy of four valent electrons, MeVEe 022.24  , 

from (5.9), we arrive at the energy of the carbon ion 412

6

C , 

 

MeVEEE eatomCionC 34932212.924,,  .  (5.10) 

 

Thus, the binding energy of the carbon ion 412

6

C , obtained here on the 

basis of shell-nodal atomic model and the DM, is in well agreement with the 

binding energy of the carbon nucleus C12

6  equal to MeV488.92 , calculated 

from the formula on the mass difference, mcE  2 . 

For the derivation described above, the used value of the first constituent of 

the binding energy of helium and carbon atoms, 2.224 MeV, originates from 

the well-known formula mcED  2  (4.3). It is the binding energy of deuteron 

D ( H2

1
). We have the right to take this value assuming that according to shell-

nodal atomic model the coupled protons and neutrons in nodes are in the form 

of deuteron. 

We will show further that the binding energy of deuteron ED is also derived 

on the new basis accepted in this work, just like the derivation of the binding 

energy of helium and carbon atoms. This aim is achieved on the basis of the 

supposition that solutions of the wave Eq. (1.2), resulted in the shell-nodal 

structure of atomic and interatomic (crystal or molecular) spaces (Fig. 1.1), are 

also valid for the subatomic (intra-nucleon) space. It means that basic 

constituents of atoms, protons and neutrons, have the same shell-nodal internal 

structure depicted graphycally in Fig. 1.1. In this connection, we will explain 

first of all our point of view on the nucleon structure and answer to the 

question: what particles of the subatomic level are the main “building bricks” 

for nucleons? 

Let us proceed to elucidate now this question as it is solved in the 

framework of the Dynamic Model of Elementary Particles. 
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6. The spectrum of associated masses of elementary particles 
 

The spectrum of associated masses follows from the DM [1, 7]. In 

dependence on the character of exchange, we distinguish the masses in the 

longitudinal exchange (at motion-rest in the cylindrical field of matter-space-

time), the masses in the transversal exchange (transversal oscillations of the 

wave beam), and the masses in the tangential exchange (at motion-rest in the 

cylindrical space-field). 

We show here only the derivation of the spectrum of masses (taken from 

the author’s work [1]) playing the role in the longitudinal exchange, because 

the latter leads to masses of the particles constituent of atoms as, for example, 

-mesons, -mesons, -quanta, etc. This will help understanding the concept 

set forth first in [1] and developed here for the internal spatial structure of 

nucleons. 

Motion-rest in the cylindrical field of matter-space-time can be presented, 

at a part of the axial line of length dz (Fig. 6.1), (in the simplest case) by the 

equation of exchange: 

    dz
z

F

t
dzz











2

2

,   (6.1) 

 

where z is the linear density of mass,  is the axial displacement, and F is the 

power of exchange. 

 
 

 
 

 

Fig. 6.1.  A graph of power of the elementary longitudinal exchange. 

 

Let w be the density of energy of basis and p be the density of energy of 

superstructure. In a linear approximation, the relative change of energy is 

zwS

zpS




, where zwS  is the energy of an elementary differential volume zS , 

and zpS  is its change. 
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Assuming that the relative change of energy of exchange is equal to the 

relative linear change of the elementary volume of space-field, 

zzwS

zF

zwS

zpS














, we obtain 

z
wSF




 . As a result, the equation of 

motion-rest takes the form 

 
2

2

2

2

z

wS

t z 









  or  

2

2

2

2

twSz

z









. 

 

An element of a beam is tcz  ; hence, 
 

2

2

22

2

tc

wS

t z 









  

and  

zwSc  / . 

 

If we consider the exchange with the density of energy E at the level of Young 

modulus, then 

    zESc  / .    (6.2) 

and 

    zESkkc  / ,   (6.2a) 

 

where k is the wave number, which takes a series of discrete values. 

Let us determine the characteristic spectrum of frequencies. For the hard-facing 

alloys, the Young modulus is approximately within GPa680600  . We select, 

in the capacity of a calculated magnitude, the characteristic value 654.9, which 

satisfies the metrological spectrum on the basis of the fundamental measure 

[22]: 

    Pa11106.549=E  .   (6.3) 

 

Let the remaining parameters be equal to 
 

  
02 rl  , lmel / ,  2

0rS  . (6.3a) 
 

Under these conditions, a formula of the characteristic spectrum of frequencies 

takes the form 
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    kr004  ,    (6.4) 

where    

 
88.272

1085091084.6
22

1150

0

e

e

s
m

Er 



  .  (6.5) 

 

The frequency 
0  is bound up with the fundamental frequency e by the 

following characteristic ratio: 
     

8752708.2728103045.272/ 0 e
.  (6.5a) 

 

The frequency of the fundamental tone 
0  is the characteristic frequency of H-

atomic level. If  nl , then nkr 0
 and 

    

116

0 104  snnn ,    (6.6) 
 

where elg2  is the fundamental quantum-period [22, 23]. 

The spectrum of frequencies (6.6) defines the spectrum of associated masses of 

elementary particles with the elementary charge e: 
 

  
n

m

n

ee
M e

n

n

5.681

4 0







 .   (6.7) 

 

If )2/( nl , then nkr )2/1(0   and 
 

  nn  02 , 
n

m

n

ee
M e

n

n

1371

2 0







 . (6.8) 

 

At last, at )/( 4nl  , it follows nkr )/( 410   and 
   

nn  0 , 
n

m

n

ee
M e

n

n

2741

0







 . (6.9) 

 

Because at 1n , a particle of the mass emM 2741   is the -meson, we will 

call the frequency 
0  the meson frequency. 

At ,4,3,2,1n  we have 
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   274 me   -meson 

   137 me   -quantum 

   91.3 me  -lepton 

   68.5 me  g-lepton  (6.10) 

 

Two g-leptons form a -quantum, three g-leptons compose a -meson: 
    

205.5 me  -meson.   (6.11) 
 

Particles are able to the mutual transformation. In particular, -meson, as four 

g-leptons, can decay following the schemes: 
 

     

     g 

     g + g     (6.12)
 

Evidently, in this series, the first decay is the most probable. The -meson and 

-quantum decay in a similar way:  
     

  g

     gg.      (6.13)
 

The g-lepton had no luck. Having a relatively big mass, it, nevertheless, 

was eliminated from a series of elementary particles because of the 

requirements of relativity theory. But afterwards, it was returned to this series 

under different names: muonic neutrino, electronic antineutrino, etc. Such 

names of g-lepton were stipulated by a concrete interpretation of the reaction. 

Following [1], we have to recognize that g-lepton exists in the four states: 
     

   +g, -g, +ig, -ig.   (6.14) 
 

The mass of g-lepton is close to a quarter of the fundamental period  (in units 

of the electron mass) [22, 23]: 
    

eg mem 210)lg2(
4

1
     (6.15) 

 

that expresses the definite facets of the Eternity. 

On the basis of the g-lepton, we compile a sequential series of particles (n-

multiple to g): 



http://shpenkov.com/pdf/stronginteraction.pdf 28 

g =    g + g 

   g =     + g 

   g =     + g    or  +  

   g = K5   + g    or  +  

   g = K6   +   

   g = K7   +    (6.16) 

   g = K8   +   

   g = K9  K8 + g  

   g = K10  2 + 
   ..........................................………. 

   g =   n + K5 

    ..........................................………. 

Here, Kn is the symbol of the particle, expressed in g-leptons. 

 

Experiments detect all these structures of the wave field (under either name or 

without it) in the form of energetic dispersion in a process of transformations. 

In 1931, Dirac showed [24] that a field theory could be constructed on the basis 

of a magnetic monopole g with the following elementary charge 
     

eehcqg 5.68/0  .    (6.17) 

 

The division of the charge qg by the fundamental frequency e gives its mass: 
     

eg mm 5.68 .    (6.18) 

 

Evidently, g-lepton and the Dirac monopole g are the same particle. At that 

time, the mass of the monopole was determined incorrectly, therefore, g-lepton 

was not rendered due attention. Knowing the associated mass of Dirac 

monopole, we obtain the radius of its sphere  
 

   
egg rcmmr 410706.14/ 9

0
3

1

  .  (6.19) 

 

where re is the radius of the electron sphere. 

We see that rg is very close to the rational golden section of the fundamental 

metrological period : 

   cmerg

910lg2
8

5   .   (6.20) 
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The result obtained gives us the reason to assume that g-lepton is a highly 

stable particle, which possibly is a constituent (like a nucleon for atoms) of 

protons, neutrons, and other elementary particles of this series. If only this is 

true, then on the basis of the monopole and the periodic law of space [1, 5], it is 

possible to compose the spectrum of elementary particles. In such a spectrum, 

g-lepton is a hydrogen analog, -quantum is a deuterium analog, -meson is a 

tritium analog, -meson is a helium analog, etc. 

 

 

7. The g-lepton structure of proton and neutron 
 

Accepting the supposition that nucleons (protons and neutrons) consist of 

g-leptons, we must recognize that nucleons represent by themselves, by 

analogy with atoms of the nucleon level, the silicon of the g-lepton level of the 

atomic number 14 (having 14 nodes according to solutions of (1.2) presented in 

Fig. 1.1). Indeed, let the mass of g-lepton will be precisely multiple to a quarter 

of the fundamental period, with respect to the electron mass me, 
 

eeg mmem 21881769.6810lg2)4/1( 2  . (7.1) 

 

The masses of proton and neutron are, correspondingly, 
 

ep mm 1526675.1836  and 
en mm 683645.1838 . (7.2) 

 

Hence, it is clear that the mass number of nucleons at the g-lepton level 

must be rather more than 27, because of the relation 
 

95273397.26/ gn mm    (7.3) 

 

with taking into account an essential value of the binding energy of g-leptons 

influenced on the resulting mass of nucleons. 

On this basis, we assume that protons and neutrons represent, respectively, 

at the g-lepton level, two stable isotopes analogous, in nodal structure, to the 

silicon isotopes, Si28

14
 and Si29

14
. Their nodal structure, in full agreement with 

solutions of the wave equation (1.2) (Fig. 1.1), is presented in Fig. 7.1. The 

polar-azimuthal functions (according to Eq. (1.3)) of 14Si and space disposition 

of its spherical shells and potential nodes are shown in Fig. 7.2. 
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Fig. 7.1. A symbolic design of the shell-nodal structure of silicon, Si28

14
 and 

Si29

14
, in accordance with the shell-nodal structure of atoms shown in Fig. 1.2. 

 

 

 
Fig. 7.2. The structure of polar-azimuthal functions (1.3) (at the left), and the 

space arrangement of the 14 polar-azimuthal nodes in four (I – IV) spherical 

shells of 14Si. 

 

Thus, we regard a neutron of the Si29

14  structure, in the above meaning, as 

one of the unstable isotopes of protium (the simplest hydrogen atom H1

1 ). The 

neutron contains additionally one g-lepton in comparison with the proton of the 

Si28

14  structure. We assume that this g-lepton is in the central polar potential-
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kinetic node (such nodes are metastable places for constituent particles) and 

forms with an electron a g-e pair (see Fig. 7.3). As follows from calculations, 

the paired electron of the central node is responsible for the negative magnetic 

moment of the neutron. The neutron is a stable isotope only in a bond state 

with other neutrons, like Si29

14
. It decays during s1000  to a proton (the Si28

14
 

analogous), an electron, and a neutral g-lepton (an antineutrino ~  of nuclear 

physics): 

gepn   .   (7.4) 

 

The shell-nodal structure of Si28

14
 (and Si29

14
) (Fig. 7.1 and 7.2) is more 

complicated than the shell-nodal structure of C12

6  (Fig. 2.3), because it has two 

shells and eight nodes more (at 2,2  ml  and 1,3  ml ). An internal 

shell (I) with two polar-azimuthal nodes (1, 2) is the shell of the helium atom 

(see Fig. 2.2). The second internal shell (II) is the external shell of the carbon 

atom. The third shell (III) is the external shell of the neon atom. The shell IV is 

the external shell characteristic for the silicon atom. 

According to SNM, the unrepeatable (specific) structure of external shells 

mainly defines individual properties of atoms distinguishing them from each 

other. The external shell of 14Si has two collateral nodes not completed by 

nucleons in the isotopes of silicon under consideration. Silicon is the first 

element of the periodic table with such nodes (unnumbered in Fig. 1.1 and 

other figures), which are metastable states judging from the fact that 

amplitudes of polar-azimuthal functions determining their positions on shells 

are essentially smaller that corresponding amplitudes of principal (numbered in 

presented figures) nodes. This feature provides the motion, in its internal space, 

not only of particles, which are much less than nucleons, but also the motion of 

nodal nucleons themselves. Quantum theory interprets this phenomenon as the 

motion of “holes”. 

A neutron has the negative magnetic moment of the value 

 
12610)23(96623640.0   TJn   (7.5) 

 

(according to the CODATA [25]). This magnitude is approximately in 1.46 

times less in absolute value than the (positive) magnetic moment of a proton. A 

simplified picture of the neutron g-lepton structure with the surrounding field 

looks conditionally as is depicted graphically in Fig. 7.3. 
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Fig. 7.3. A neutron as an analogous of the silicon atom Si29

14
 with the 

surrounding field; rn is the neutron outer shell; g-e is the g-lepton-electron pair; 

r? is the inner radius of the neutron shell; 2g is the condition designation of 14 

principal polar-azimuthal potential nodes completed with coupled g-leptons 

(the 29
th

 g-lepton coupled with an electron is in the central polar potential-

kinetic node, on the z-axis); 
n  is the magnetic moment of the neutron. 

 

According to the formula of mass defect (4.1), the binding energy of a 

proton, consisted of 28 g-leptons, is to be 
 

MeVmmcmcpE pg 79769638.62)28(2)( 2  , (7.6) 

 

so that the binding energy per g-lepton is 
 

MeVpApEp 242774871.2)(/)()(  ,  (7.7) 

 

where 28)( pA  is the mass number of a proton at the g-lepton level. 
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The corresponding values for a neutron ( 29)( nA ) are 

 

MeVmmcnE ng 36715712.71)29()( 2  , (7.8) 

 

MeVnAnEn 460936452.2)(/)()(  .  (7.9) 

 

Now, resting on the shell-nodal g-lepton structure of nucleons, we can 

proceed to derive the binding energy of deuterium and tritium regarding them 

as the junction, respectively, of two and three g-lepton systems (pairs) 

 

 

8. The binding energy of deuterium H2

1
 and tritium H3

1
 

 

At the joining of two H-atoms, of a neutron and the hydrogen atom H1

1
 

(protium), the deuterium atom H2

1
 is formed. The process of joining results in 

the penetration of spaces of one nucleon into another, so that the partial 

overlapping of spherical shells of both nucleons occurs. With this, all g-lepton 

nodes (Fig. 7.3), filled with coupled g-leptons, of one nucleon and 

corresponding nodes of another nucleon draw together at the distance r defined 

by solutions of the wave equation (1.2) (i.e., by the roots of Bessel functions). 

As a result, 28 helium structures on the basis of binding of approached pairs of 

coupled g-leptons, like that one shown in Fig. 8.1, are formed. 

 

 
Fig. 8.1. The helium structure formed on the basis of binding of two g-lepton 

nodes. 

 

The distance r between the nodes is defined by roots of Bessel functions 
 

krz nm , .    (8.1) 

The unknown value in this expression is the wave number k equal to the 

inverse value of the wave radius  , 

 

/1k .    (8.2) 
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The wave radius   defines the characteristic radii of elementary spherical and 

cylindrical surfaces described by Bessel functions (8.1) with zero and extremal 

values. As we saw above, at the nucleon level, 
ek /1 , where 

cme

810603886538.1   originates from the DM (3.12). The wave radius of 

the value 
e  is responsible for the arrangement of nucleons in atoms, and 

hence in crystals, molecules, etc. at the definite absolute distances. 

Accordingly, it is not a random coincidence that the wave diameter of 
 

cme

8102.32     (8.3) 

 

is equal, in average, to lattice parameters of crystals. Thus, the wave radius at 

the nucleon level 
n  is equal to (coincides with) the fundamental wave radius 

of exchange 

een c  / ,   (8.4) 

 

it defines the principal parameters of atomic spaces. Note that 
 

ee me /     (8.5) 

 

is the fundamental frequency of exchange at the atomic and subatomic levels 

(the frequency of the “electrostatic field”). 

Obviously, spaces of the g-lepton level (we mean the internal spaces of 

nucleons) have another absolute value of the wave radius. The spherical space 

of a nucleon, like the spherical space of an atom, is also a system of wave 

shells, but its own whose relative size is defined by the relative radius 

nmzkr , . The internal proper shells of nucleons with its own nodes, where 

g-particles are localized, form the superfine discrete structure of atoms.  

Thus, we stressed again that solutions of the wave equation (1.2) give only 

the relative radius and hence, the relative value of the corresponding wave 

radius  . The absolute value of the latter one must seek from some conditions 

general for wave processes at different levels.  

We will define   from the scale analogy which exists between wave 

processes at any levels and, in particular, which must exist between ones at the 

nucleon and g-lepton levels. The matter is that the fundamental relations 

existed between the main wave parameters in both scales must keep. One of the 

fundamental relations exists between the radius of the wave spherical shell of a 
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proton rp and the fundamental wave radius 
e  of exchange of the proton with 

other particles and the surrounding field. The theoretical radius of the wave 

shell of the proton (proton’s radius for short), obtained from the formula (3.2) 

at the condition 1)( 2 perk  and 1 r , is 

 

cmmthr pp

83
1

0 10510578616.0)4/()(  . (8.6) 

 

The fundamental wave radius is 
 

cmc ee

810603886538.1/  .  (8.7) 
 

The ratio of both magnitudes is equal, with some accuracy, to the fundamental 

constant , 

 141311617.3)(/ thrpe .  (8.8) 

 

This ratio shows that the wave radius 
e , in value, is a half of the length of 

the equatorial circumference of the wave spherical shell of a proton. 

Obviously, the same ratio must be valid for the radius of the wave spherical 

shell of g-lepton, rg, and the wave radius of the g-lepton level, g , so that we 

have the right to assume that 
 

)(/ thrgg .   (8.9) 

Hence, for  
 

cmmthr gg

83
1

0 10170370509.0)4/()(   (8.10) 

 

with gmg

2610214420763.6   (see (7.1) and (6.15)), the wave radius of the 

g-lepton level g is 

cmthrgg

810534.0)(  .  (8.11) 

 

We see that the value of g  obtained on the basis of a series of approximations 

is close to the Bohr radius cmr 8

0 10529.0  . It is quite possible that more 

accurate derivations will lead to the equality 0rg  . Thus, we cannot exclude 

the equality of the above parameters: of the Bohr radius and the wave radius of 
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g-lepton level g , which both are the basic parameters of the wave sphere 

atomic space. 

Hence, taking the root of Bessel functions, 89357697.01,0,  yz nm , as in 

the case of the helium atom, we arrive at the following distance r between two 

pairs of g-leptons (see Fig. 8.1) in coupling nucleons: 
 

cmyr g

8

1,0 10477.0   .   (8.12) 

 

It means that wave spherical shells of two H-atoms in the deuterium H2

1
 are 

partially overlapped as is shown in Fig. 8.2 (where cmrp

81051.0   (8.6)). 

Centers of masses of two constituent H-atoms are at the distance 

cmr 810477.0  , which is some less than the Bohr radius, 
0rr   . 

At such conditions (distance r of the value (8.12)), the binding energy of 

internodal g-leptons pairs (Fig. 8.1) is 
 

eV
r

q
E

g

g

6

0

2

10070246848.0
8




 ,  (8.13) 

where 
1710161576228.1   sgmq egg  

 

 

 
Fig. 8.2. The relative disposition of two nucleons in the deuterium atom H2

1 ; 

0rr  . 

 

is the exchange charge of the g-lepton, which is an elementary quantum of 

exchange at the g-lepton level. 

According to the above definition (model), a proton has 28 g-leptons (14 

nodes filled every with 2 coupled g-leptons). A neutron, in comparison with the 

proton, has one more g-lepton located in the central polar node (see Fig. 7.1 



http://shpenkov.com/pdf/stronginteraction.pdf 37 

and 7.2). Thus, because of all g-leptons take part in the exchange (interaction), 

we have 28.5 pairs of interacting g-leptons in H2

1
. Hence, the resulting binding 

energy, related to the internodal exchange (interaction) of all g-leptons 

belonging to two interacting nucleons, is 
 

MeVEE gexchg 002.25.28,  .  (8.14) 

 

The obtained value is close to the known value of 2.224 MeV (4.3) for the 

binding energy of a deuteron. It is the main (1st) but not alone constituent of 

the total binding energy of H2

1
 (as in the case of helium and carbon atoms 

considered above). By accepted analogy between wave processes at two levels 

under consideration (nucleon and g-lepton), we must take also into account 

(2nd) the energy of coupling of two g-leptons in their nodes and (3rd) the 

binding energy of g-lepton nodes with the shells where these nodes are located.  

However, we will not derive the rest (2nd and 3rd) constituents here. The 

derivation of the third one was carried out for helium and carbon atoms. A 

rough estimate of these constituents of the binding energy on the basis of the 

analogy between two-nodal structure of helium and two-nodal g-lepton helium 

structure (Fig. 8.1), will be quite sufficient here. 

In this connection, let us assume that the ratio existed between the total 

binding energy of helium He4

2
, 28.3 MeV, and its second constituent, the 

binding energy of coupled nucleons in its nodes (i.e., the binding energy of 

deuterium), 2.224 MeV, keeps the same and for the corresponding g-lepton 

helium structure shown in Fig. 8.1. In this case, because the total binding 

energy of all 28 g-lepton helium structures must be equal to 2.224 MeV 

(according to (4.3)), the binding energy of all g-lepton “deuterons” in all g-

lepton nodes must be 

MeVEg 175.0)2(  .   (8.15) 

  

And the binding energy of one g-lepton “deuteron” is 
 

keVg 25.62  .   (8.15a) 

 

Hence, finally, we arrive at the following binding energy of H2

1 : 

 

)3()3()2(,

2

1 177.2)( gggexchg EMeVEEEHE  .  (8.16) 
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Obviously, the contribution of the third constituent )3(gE , corresponding to 

the binding energy of all 28 g-nodes with their wave spherical shells will be 

less than the contribution of the second constituent estimated above. Therefore, 

we assume that after adding of )3(gE  to the total energy we will closer 

approach to the value 2.224 MeV, which follows from the formula on mass 

defect (4.3). 

In addition, let us proceed now to the derivation of the binding energy of 

tritium. The shell-nodal structure of three joined g-lepton nodes in tritium 

(belonging to three interacting nucleons), on the g-lepton level, recalls the 

nodal structure of helium isotope He6

2
 (Fig. 8.3). Appearance of two coupled 

g-leptons in the central polar node slightly changes (increases) the former 

equilibrium distance r existed between outmost pairs of g-leptons in the g-

lepton helium structure shown in Fig. 8.1. 

The nearest to the cmr 810477.0   equilibrium distance between g-

lepton nodes, admitted by solutions of the wave equation (1.2), is the distance 

equal to the wave radius of the g-lepton level, cmg

810534.0  . Therefore, 

we accept this value of the distance between the outermost g-lepton nodes in 

tritium (Fig. 8.3) for further calculations, so that we have 
 

cmr g

810534.0   , 

cmrr g

8

21 10267.02/   .  (8.17) 

 

We also assume that the exchange interaction in the presented structure exists 

between every two partially overlapped pairs as is shown conditionally by two 

arrows in Fig. 8.3. 

 

 
Fig. 8.3. The nodal structure of helium isotope He6

2
, and the local structure 

formed under the joining of three g-lepton nodes in tritium regarded as the p-n-

n system. 
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The main constituent of the binding energy in this case, the energy of 

internodal exchange between two nearest nodes, is 
 

MeV
r

q
E

g

g 140493696.0
8 10

2




 .  (8.19) 

 

Hence, the total binding energy of internodal exchange, with allowance for all 

g-lepton bonds in tritium, is 
 

MeVENE gbondsgexchg 07838752.8,,  ,  (8.20) 

 

where 5.57, bondsgN  is the number of internodal g-lepton bonds (p-n and n-n, 

28.5+29) in tritium consisted of two neutron and one proton. 

The second constituent, the total binding energy of all g-lepton “deuterons” 

in tritium, is (according to (8.15)) 
 

MeVENE gnodesgg 2625.02)2(   ,  (8.21) 

 

where 42143 nodesgN  is the number of completed polar-azimuth g-lepton 

nodes (or the number of coupled g-leptons). 

Without the smallest in value contribution of the third constituent Eg(3) 

(related to the binding energy of g-lepton nodes with the shells of their 

localization), we obtain finally the following magnitude  

 

MeVEEHE gexchg 34088752.8)( )2(,

3

1  .  (8.22)  

 

For comparison, the binding energy of tritium, originated from the formula 

(4.1), is 

 

MeVmcE 481821.82  .  (8.23) 

 

Thus, we have an approximate coincidence in the resulting data obtained by 

two ways different of principle. 
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9. Conclusion 
 

The obtained results justify in favor of the validity of the new foundations 

used in this work for the derivation of the binding energies: the shell-nodal 

atomic model and the dynamic model of elementary particles. Considering 

hierarchy of particles beginning from an electron up to a nucleon, we can add 

the following [1]. 

It is possible to suppose that at the g-level the electron is a very miniature 

nucleon. Then a g-lepton, judging from its reference mass mg=68.22me, 

represents a composite atom-molecule of the electron level with the ordinal 

number 32z   (if to rely on the wave equation in the g-lepton space). Indeed, 

an atom of the periodic table at the nucleon level with the mass number more 

than 68 (“more”, because we must take into account the binding energy of g-

leptons) corresponds rather to 32Ge, than 31Ga, with the mass numbers of the 

stable isotopes within 70-76. Moreover, the germanium atom is in the same 4th 

group of the periodic table as the silicon atom, which is an analogous of 

nucleons at the g-lepton level. 

In that case, it is possible to say that all elementary particles consist finally 

of electrons. The relation of radii of the electron and g-lepton spheres makes it 

possible to give one more prediction: the spectrum of particles with measures 

beginning from the electron to g-quantum masses (the constituent of the vast 

variety of e-class particles) also exists in nature. The last is the most probable.  

By radioactive atomic decay, the rebuilding of atoms occurs, helium the 

most important fragment of nucleonic shells of atoms is rejected in this case. 

Two outer shell nodes of helium lost their own electrons. Of course, for all 

that, the definite modification both on the part of nucleons and on the part of g-

particles, runs its course. As a result, fine fractions in the form of -rays and 

miniature nucleons-electrons of right and left polarization are rejected. The 

latter, in the form of the flow of positive and negative electrons, is also 

experimentally recorded. 

Further, during bombarding of targets by fast protons, decay of nucleons 

takes place and nucleonic “helium”, in the form of -mesons, is thrown out. In 

turn, -mesons decay into two -quanta, each of which generates a pair of g-

lepton of right and left polarization. In addition, these g-leptons can eject 

electrons. 

The above-considered picture of decay corresponds to reality. Therefore, it 

is possible to state that in the hierarchy of elementary particles the electrons are 

at the end of the hierarchy chain of e-class microobjects. 
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